# Blood Flow Modelling to Improve Cardiovascular Diagnostics: a Preliminary Review of 1-D Modelling

## DOI:

https://doi.org/10.14419/ijet.v7i4.26.22132## Published:

2018-11-30## Keywords:

Arterial network, Blood flow modelling, Computational fluid dynamics, Numerical modelling, One-dimensional model## Abstract

Cardiovascular diseases issue an enormous threat to the health and general wellbeing of the population, therefore multidisciplinary knowledge of the cardiovascular system and its mechanics has become a necessity. Due to the lack of wide scale experimental studies, the limitations associated with it and the immense advances in computational technology, in recent years, numerical modelling of the cardiovascular system has gained popularity as a viable alternative. One-dimensional models as compared to higher dimensional models provide a feasible and efficient means to study the dynamics of pulse wave propagation in order to increase the comprehension of circulatory physiology. The aim of this paper is to provide an overall review of the types, solution methods, treatment of boundary conditions, applications and advantages as well as disadvantages of one-dimensional models of the human arterial network.

## References

[1] S. Epstein, M. Willemet, P. J. Chowienczyk, and J. Alastruey, â€œReducing the number of parameters in 1D arterial blood flow modeling: less is more for patient-specific simulations,â€ *Am. J. Physiol. - Hear. Circ. Physiol.*, vol. 309, no. 1, pp. H222â€“H234, 2015.

[2] Kearney, M. Whelton, K. Reynolds, P. Muntner, P. Whelton and J. HE, "Global burden of hypertension: analysis of worldwide data", *The Lancet*, vol. 365, no. 9455, pp. 217-223, 2005.

[3] A. Avolio, â€œMulti-branched model of the human arterial system,â€ *Med. Biol. Eng. Comput.*, vol. 18, no. 6, pp. 709â€“718, 1980.

[4] N. Stergiopulos, D. F. Young, and T. R. Rogge, â€œComputer simulation of arterial flow with applications to arterial and aortic stenoses,â€ *J. Biomech.*, vol. 25, no. 12, pp. 1477â€“1488, 1992.

[5] M. S. Olufsen, C. S. Peskin, W. Y. Kim, E. M. Pedersen, A. Nadim, and J. Larsen, â€œNumerical simulation and experimental validation of blood flow in arteries with structured-tree outflow conditions,â€ *Ann. Biomed. Eng.*, vol. 28, no. 11, pp. 1281â€“1299, 2000.

[6] L. Formaggia, D. Lamponi and A. Quarteroni, "One-dimensional models for blood flow in arteries", *Journal of Engineering Mathematics*, vol. 47, no. 34, pp. 251-276, 2003.

[7] S. J. Sherwin, V. Franke, J. PeirÃ³, and K. Parker, â€œOne-dimensional modelling of a vascular network in space-time variables,â€ *J. Eng. Math.*, vol. 47, no. 3â€“4, pp. 217â€“250, 2003.

[8] D. Bessems, M. Rutten, and F. Van De Vosse, â€œA wave propagation model of blood flow in large vessels using an approximate velocity profile function,â€ *J. Fluid Mech.*, vol. 580, pp. 145â€“168, 2007.

[9] L. R. Hellevik, J. Vierendeels, T. Kiserud, N. Stergiopulos, F. Irgens, E. Dick, K. Riemslagh, and P. Verdonck, â€œAn assessment of ductus venosus tapering and wave transmission from the fetal heart,â€ *Biomech. Model. Mechanobiol.*, vol. 8, no. 6, pp. 509â€“517, 2009.

[10] P. R. Leinan, â€œBiomechanical modeling of fetal veins: The umbilical vein and ductus venosus bifurcation,â€ no. November, p. 124, 2012.

[11] V. G. Eck, J. Feinberg, H. P. Langtangen, and L. R. Hellevik, â€œStochastic sensitivity analysis for timing and amplitude of pressure waves in the arterial system,â€ *Int. j. numer. method. biomed. eng.*, vol. 31, no. 4, p. e02711, 2015.

[12] J. P. Mynard, â€œOne-dimensional Blood Flow Modelling with the Locally Conservative Galerkin ( LCG ) Method,â€ no. November, 2007.

[13] K. Low, R. van Loon, I. Sazonov, R. Bevan and P. Nithiarasu, "An improved baseline model for a human arterial network to study the impact of aneurysms on pressure-flow waveforms", *International Journal for Numerical Methods in Biomedical Engineering*, vol. 28, no. 12, pp. 1224-1246, 2012.

[14] T. E. MÃ¼ller L, â€œA global multi-scale mathematical model for the human circulation with emphasis on the venous system A global multi-scale mathematical model for the human circulation with emphasis on the venous system,â€ *Int. j. numer. method. biomed. eng.*, vol. 30, no. 7, pp. 681â€“725, 2014.

[15] L. Formaggia, F. Nobile, and A. Quarteroni, â€œA One Dimensional Model for Blood Flow: Application to Vascular Prosthesis,â€ in *Mathematical Modeling and Numerical Simulation in Continuum Mechanics*, 2002, pp. 137â€“153.

[16] T. E. MÃ¼ller L, â€œAn enhanced closed-loop model for the study of cerebral venous blood flow.,â€ *J. Biomech.*, vol. 47, no. 13, pp. 3361â€“3372, 2014.

[17] P. J. Blanco, S. M. Watanabe, E. A. Dari, M. A. R. F. Passos, and R. A. FeijÃ³o, â€œBlood flow distribution in an anatomically detailed arterial network model: criteria and algorithms,â€ *Biomech. Model. Mechanobiol.*, vol. 13, no. 6, pp. 1303â€“1330, 2014.

[18] F. R. Blanco P, Watanabe S, â€œIdentification of vascular territory resistances in one-dimensional hemodynamics simulations.,â€ *J. Biomech.*, vol. 45, no. 12, pp. 2066â€“2073, 2012.

[19] F. R. Blanco P, Watanabe S, Passos M, Lemos P, â€œAn anatomically detailed arterial network model for one dimensional computational hemodynamics.,â€ *IEEE Trans. Biomed. Eng.*, vol. 62, pp. 736â€“753, 2015.

[20] J. Wan, B. Steele, S. A. Spicer, S. Strohband, G. R. FeijoÂ´o, T. J. R. Hughes, C. A. Taylor, G. R. FeijÃ³o, T. J. R. Hughes, and C. A. Taylor, â€œA one-dimensional finite element method for simulation-based medical planning for cardiovascular disease,â€ *Comput. Methods Biomech. Biomed. Engin.*, vol. 5, no. 3, pp. 195â€“206, 2002.

[21] S. J. Sherwin, L. Formaggia, and J. PeirÃ³, â€œComputational modelling of 1D blood flow with variable mechanical properties and its application to the simulation of wave propagation in the human arterial system,â€ *Int. J. Numer. Methods Fluids*, vol. 700, no. April 2002, pp. 673â€“700, 2003.

[22] S. A. Urquiza, P. J. Blanco, M. J. VÃ©nere, and R. A. FeijÃ³o, â€œMultidimensional modelling for the carotid artery blood flow,â€ *Comput. Methods Appl. Mech. Eng.*, vol. 195, no. 33â€“36, pp. 4002â€“4017, 2006.

[23] T. J. R. Hughes and J. Lubliner, â€œOn the one-dimensional theory of blood flow in the larger vessels,â€ *Math. Biosci.*, vol. 18, no. 1â€“2, pp. 161â€“170, 1973.

[24] J. C. Stettler, P. Niederer, M. Anliker, and M. Casty, â€œTheoretical analysis of arterial hemodynamics including the influence of bifurcations. Part II: critical evaluation of theoretical model and comparison with noninvasive measurements of flow patterns in normal and pathological cases.,â€ *Ann. Biomed. Eng.*, vol. 9, pp. 165â€“175, 1981.

[25] N. Stergiopulos, â€œComputer simulation of arterial blood flow,â€ 1990.

[26] P. Reymond, F. Merenda, F. Perren, D. RÃ¼fenacht, and N. Stergiopulos, â€œValidation of a one-dimensional model of the systemic arterial tree.,â€ *Am. J. Physiol. Heart Circ. Physiol.*, vol. 297, no. 1, pp. H208â€“H222, 2009.

[27] M. S. Olufsen, â€œStructured tree outflow condition for blood flow in larger systemic arteries.,â€ *Am J Physiol*, vol. 276, no. 1 Pt 2, pp. H257--H268, 1999.

[28] J. Alastruey, A. W. Khir, K. S. Matthys, P. Segers, S. J. Sherwin, P. R. Verdonck, K. H. Parker, and J. PeirÃ³, â€œPulse wave propagation in a model human arterial network: Assessment of 1-D visco-elastic simulations against in vitro measurements,â€ *J. Biomech.*, vol. 44, no. 12, pp. 2250â€“2258, 2011.

[29] R. G. . Richardson, *The surgeonâ€™s heart.* Cox & Wyman Ltd., 1969.

[30] W. K., *The story of blood*. London: Jenkins, 1958.

[31] M. ElMaghawry, A. Zanatta, and F. Zampieri, â€œThe discovery of pulmonary circulation: From Imhotep to William Harvey,â€ *Glob. Cardiol. Sci. Pract.*, vol. 2014, no. 2, p. 31, 2014.

[32] D. W. R. Alfred P. Fishman, Ed., *Circulation of the blood: men and ideas*. Oxford University Press, 1964.

[33] A. Alastruey, â€œNumerical modelling of pulse wave propagation in the cardiovascular system: development, validation and clinical applications.,â€ Ph.D. dissertation, 2006.

[34] L. Euler, *Principia pro motu sanguinis per arterias determinando*, vol. 2:814-823, no. 1844 detecta. 1775.

[35] Y. C. Fung, *Biomechanics: Circulation*, Second Edi. Springer, 1997.

[36] D. L. Kline, *Thomas Young, Forgotton Genius: An Annotated Narrative Biography*. Cincinnati: Vidan Press, 1993.

[37] T. Young, â€œHydraulic investigations, subservient to an intended Croonian lecture on the motion of the blood,â€ *Phil. Trans. Roy. Soc., London*, no. 98, pp. 164â€“186, 1808.

[38] A. I. Moens, â€œOver de voortplantingssnelheid von del pols (on the speed of propagation of the pulse),â€ Leiden, 1877.

[39] P. Chemie and A. T. D. Korteweg, â€œFortpflanzungsgeschwindigkeit des Schalles in elastischen R Â¨ ohren ( Sur la transmission du son par les fluides renferm Â´ es dans les tubes ` a parois Â´ elastiques ); Ann . der,â€ vol. 9, no. 1, pp. 127â€“134, 1880.

[40] B. Riemann, â€œGesammelte mathematische Werke und wissenschaftlicher Nachlass,â€ Liepzig, 1876.

[41] J. R. Womersley, â€œAn elastic tube theory of pulse transmission and oscillatory flow in mammalian arteries,â€ 1957.

[42] W. Nichols, M. Oâ€™Rourke, and C. Vlachopoulos, â€œMcdonaldÊ¼s Blood Flow in Arteries,â€ *Shock*, vol. 9, no. 6, p. 456, 1998.

[43] N. Westerhof, F. Bosman, C. J. De Vries, and A. Noordergraaf, â€œAnalog studies of the human systemic arterial tree,â€ *J. Biomech.*, vol. 2, no. 2, pp. 121â€“143, 1969.

[44] M. E. H. van Dongen, F.N. van de Vosse, â€œCardiovascular Fluid Mechanics,â€ *Lect. notes*, 1998.

[45] W. K. Purves, D. Sadava, and G. H. Orians, â€œLife: The Science of Biology,â€ p. 1121, 2004.

[46] M. S. Olufsen, â€œModeling of the Arterial System with Reference to an Anesthesia Simulator,â€ *Dep. Math.*, vol. Ph.D. dissertation, p. 199, 1998.

[47] S. Vogel and R. A. Calvert, â€œVital circuits: on pumps, pipes, and the workings of circulatory systems,â€ p. 315, 1993.

[48] N. Best, C; Taylor, *The Physiological Basis of Medical Practice*, 11th ed. Newyork, USA: Williams and Wilkins, 1985.

[49] E. Le, â€œBiology notes for IGCSE 2014,â€ 2014. [Online]. Available: http://biology-igcse.weebly.com/arteries-veins-and-capillaries---structure-and-functions.html.

[50] M. S. Olufsen, â€œStructured tree outflow condition for blood flow in larger systemic arteries.,â€ *Am J Physiol*, vol. 276, no. 1 Pt 2, pp. H257--H268, 1999.

[51] D. A. McDonald, â€œProfiles in cardiology.,â€ *Clin. Cardiol.*, vol. 16, pp. 842â€“843, 1993.

[52] Y. Tardy, J. J. Meister, F. Perret, H. R. Brunner, and M. Arditi, â€œNon-invasive estimate of the mechanical properties of peripheral arteries from ultrasonic and photoplethysmographic measurements,â€ *Clin. Phys. Physiol. Meas.*, vol. 12, no. 1, pp. 39â€“54, 1991.

[53] P. R. Wheater, H. G. Burkitt, and V. G. Daniels, *Functional histology : a text and colour atlas*. Edinburgh,G.B.: Churchill Livingstone, 1979.

[54] W. Caro, C G, Pedley, T, Schroter,R and Seed, *The Mechanics of the Circulation*. Oxford,G.B.: Oxford University Press, 1978.

[55] X. Wang, â€œcomputing and applications 1D modeling of blood flow in networks : numerical computing and applications,â€ *HAL Id tel-01149085*, 2015.

[56] T. Pedley, *The Fluid Mechanics of Large Blood Vessels*. Cambridge,G.B.: Cambridge University Press, 1980.

[57] Y. Shi, P. Lawford, and R. Hose, â€œReview of zero-D and 1-D models of blood flow in the cardiovascular system.,â€ *Biomed. Eng. Online*, vol. 10, no. 1, p. 33, 2011.

[58] P. Kakar and G. Y. H. Lip, â€œTowards understanding the aetiology and pathophysiology of human hypertension: Where are we now?,â€ *Journal of Human Hypertension*, vol. 20, no. 11. pp. 833â€“836, 2006.

[59] P. J. Blanco, M. R. Pivello, S. A. Urquiza, and R. A. FeijÃ³o, â€œOn the potentialities of 3D-1D coupled models in hemodynamics simulations,â€ *J. Biomech.*, vol. 42, no. 7, pp. 919â€“930, 2009.

[60] I. E. Vignon-Clementel, A. L. Marsden, and J. A. Feinstein, â€œA primer on computational simulation in congenital heart disease for the clinician,â€ *Prog. Pediatr. Cardiol.*, vol. 30, no. 1â€“2, pp. 3â€“13, 2010.

[61] S. Sankaran, M. E. Moghadam, A. M. Kahn, E. E. Tseng, J. M. Guccione, and A. L. Marsden, â€œPatient-specific multiscale modeling of blood flow for coronary artery bypass graft surgery,â€ *Ann. Biomed. Eng.*, vol. 40, no. 10, pp. 2228â€“2242, 2012.

[62] F. Cuomo, S. Roccabianca, D. Dillon-Murphy, N. Xiao, J. D. Humphrey, and C. A. Figueroa, â€œEffects of age-associated regional changes in aortic stiffness on human hemodynamics revealed by computational modeling,â€ *PLoS One*, vol. 12, no. 3, pp. 1â€“21, 2017.

[63] F. C. Xiao N, Alastruey J, â€œA systematic comparison between 1-D and 3-D hemodynamics in compliant arterial models.,â€ *Int. J. Numer. Methods Biomed. Eng.*, vol. 30, pp. 204â€“231, 2014.

[64] S. ÄŒaniÄ‡ and E. H. Kim, â€œMathematical analysis of the quasilinear effects in a hyperbolic model blood flow through compliant axi-symmetric vessels,â€ *Math. Methods Appl. Sci.*, vol. 26, no. July 2002, pp. 1161â€“1186, 2003.

[65] V. L. Streeter, W. F. Keitzer, and D. F. Bohr, â€œPulsatile Pressure and Flow Through Distensible Vessels,â€ *Circ. Res.*, vol. 13, no. 1, pp. 3â€“20, 1963.

[66] A. P. Schaaf B, â€œDigital computer simulation of human systemic arterial pulse wave transmission: a nonlinear model.,â€ *J. Biomech.*, vol. 5, pp. 345â€“364, 1972.

[67] A. H. Shapiro, â€œSteady Flow in Collapsible Tubes,â€ *J. Biomech. Eng.*, vol. 99, pp. 126â€“147, 1977.

[68] B. S. Brook, S. A. E. G. Falle, and T. J. Pedley, â€œNumerical solutions for unsteady gravity-driven flows in collapsible tubes: evolution and roll-wave instability of a steady state,â€ *J. Fluid Mech.*, vol. 396, pp. 223â€“256, 1999.

[69] W. E. Bodley, â€œThe non-linearities of arterial blood flow,â€ *Phys. Med. Biol.*, vol. 16, no. 4, pp. 663â€“672, 1971.

[70] C. W. Li and H. D. Cheng, â€œA nonlinear fluid model for pulmonary blood circulation,â€ *J. Biomech.*, vol. 26, no. 6, pp. 653â€“664, 1993.

[71] B. S. Brook and T. J. Pedley, â€œA model for time-dependent flow in (giraffe jugular) veins: Uniform tube properties,â€ *J. Biomech.*, vol. 35, no. 1, pp. 95â€“107, 2002.

[72] L. Formaggia, J. F. Gerbeau, F. Nobile, and A. Quarteroni, â€œOn the coupling of 3D and 1D Navier-Stokes equations for flow problems in compliant vessels,â€ *Comput. Methods Appl. Mech. Eng.*, vol. 191, no. 6â€“7, pp. 561â€“582, 2001.

[73] J. J. Wang and K. H. Parker, â€œWave propagation in a model of the arterial circulation,â€ *J. Biomech.*, vol. 37, no. 4, pp. 457â€“470, 2004.

[74] J. J. Wang, A. B. Oâ€™Brien, N. G. Shrive, K. H. Parker, and J. V Tyberg, â€œTime-domain representation of ventricular-arterial coupling as a windkessel and wave system.,â€ *Am. J. Physiol. Heart Circ. Physiol.*, vol. 284, no. 4, pp. H1358â€“H1368, 2003.

[75] G. Pontrelli and E. Rossoni, â€œNumerical modelling of the pressure wave propagation in the arterial ow,â€ *Int. J. Numer. Methods Fluids*, vol. 671, no. March 2002, pp. 651â€“671, 2003.

[76] K. H. Parker and C. J. H. Jones, â€œForward and Backward Running Waves in the Arteries: Analysis Using the Method of Characteristics,â€ *J. Biomech. Eng.*, vol. 112, no. 3, p. 322, 1990.

[77] E. Rooz, D. F. Young, and T. R. Rogge, â€œA finite-element simulation of pulsatile flow in flexible tubes,â€ *J. Biomech. Eng.*, vol. 104, no. May 1982, pp. 119â€“124, 1982.

[78] G. Porenta, D. F. Young, and T. R. Rogge, â€œA Finite-Element Model of Blood Flow in Arteries Including Taper, Branches, and Obstructions,â€ *J. Biomech. Eng.*, vol. 108, no. 2, p. 161, 1986.

[79] I. Surovtsova, â€œEffects of compliance mismatch on blood flow in an artery with endovascular prosthesis,â€ *J. Biomech.*, vol. 38, no. 10, pp. 2078â€“2086, 2005.

[80] D. Elad, D. Katz, E. Kimmel, and S. Einav, â€œNumerical schemes for unsteady fluid flow through collapsible tubes,â€ *J. Biomed. Eng.*, vol. 13, no. 1, pp. 10â€“18, 1991.

[81] A. J. Pullan, N. P. Smith, and P. J. Hunter, â€œAn anatomically based model of transient coronary blood flow in the heart,â€ *SIAM J. Appl. Math.*, vol. 62, no. 3, pp. 990â€“1018, 2002.

[82] J. K. Raines, M. Y. Jaffrin, and A. H. Shapiro, â€œA computer simulation of arterial dynamics in the human leg,â€ *J. Biomech.*, vol. 7, no. 1, pp. 77â€“91, 1974.

[83] P. J. Reuderink, H. W. Hoogstraten, P. Sipkema, B. Hillen, N. Westerhof, N. One-dimensional, O. F. Pulse, W. Transmission, and A. T. High, â€œLinear and nonlinear one-dimensional models of pulse wave transmission at high womersley numbers,â€ *J. Biomech.*, vol. 22, no. 819, pp. 819â€“827, 1989.

[84] G. Perdikaris, P, Grinberg, L, Karniadakis, â€œAn Effective Fractal-Tree Closure Model for Simulating Blood Flow in Large Arterial Networks,â€ *Ann. Biomed. Eng.*, vol. 43, no. 6, pp. 1432â€“1442, 2015.

[85] T. Sochi, â€œThe flow of power law fluids in elastic networks and porous media,â€ *Comput. Methods Biomech. Biomed. Engin.*, vol. 19, no. 3, pp. 324â€“329, 2016.

[86] B. N. Steele, J. Wan, J. P. Ku, T. J. R. Hughes, and C. A. Taylor, â€œIn vivo validation of a one-dimensional finite-element method for predicting blood flow in cardiovascular bypass grafts,â€ *IEEE Trans. Biomed. Eng.*, vol. 50, no. 6, pp. 649â€“656, 2003.

[87] K. Devault, P. A. Gremaud, V. Novak, M. S. Olufsen, G. V. Eres, and P. Zhao, â€œBlood flow in the circle of willis: Modelling and Calibration,â€ *Multiscale Model. Simul.*, vol. 7, no. 2, pp. 888â€“909, 2008.

[88] P. Reymond, Y. Bohraus, F. Perren, F. Lazeyras, and N. Stergiopulos, â€œValidation of a patient-specific one-dimensional model of the systemic arterial tree,â€ *Blood*, pp. 1173â€“1183, 2011.

[89] B. N. Steele, C. A. Taylor, J. Wan, J. P. Ku, and T. J. R. Hughes, â€œIn vivo validation of a one-dimensional finite element method for simulation-based medical planning for cardiovascular bypass surgery,â€ in *Annual Reports of the Research Reactor Institute, Kyoto University*, 2001, vol. 1, no. 5, pp. 120â€“123.

[90] M. Willemet, V. Lacroix, and E. Marchandise, â€œValidation of a 1D patient-specific model of the arterial hemodynamics in bypassed lower-limbs: Simulations against in vivo measurements,â€ *Med. Eng. Phys.*, vol. 35, no. 11, pp. 1573â€“1583, 2013.

[91] C. Audebert, P. Bucur, M. Bekheit, E. Vibert, I. E. Vignon-Clementel, and J.-F. Gerbeau, â€œKinetic scheme for arterial and venous blood flow, and application to partial hepatectomy modeling,â€ *Comput. Methods Appl. Mech. Eng.*, vol. 314, 2017.

[92] E. Marchandise, M. Willemet, and V. Lacroix, â€œA numerical hemodynamic tool for predictive vascular surgery,â€ *Med. Eng. Phys.*, vol. 31, no. 1, pp. 131â€“144, 2009.

[93] A. R. Ghigo, P. LagrÃ©e, and X. Wang, â€œOne-dimensional Arterial Network Model for Bypass Grafts Assessment a rXiv - H AL,â€ pp. 1â€“17.

[94] M. Saito, P. Marie-curie, and I. Jean, â€œOne-dimensional modeling of pulse wave for a human artery model,â€ 2010.

[95] A. X. Wang, O. Delestre, J.-M. Fullana, M. Saito, Y. Ikenaga, M. Matsukawa and P.-Y. Lagee., â€œComparing different numerical methods for solving arterial 1d flows in networks.,â€ *Comput. Methods Biomech. Biomed. Engin.*, vol. 15(sup1), pp. 61â€“62, 2012.

[96] C. Leguy, E. Bosboom, H. Gelderblom, A. Hoeks and F. van de Vosse, "Estimation of distributed arterial mechanical properties using a wave propagation model in a reverse way", *Medical Engineering & Physics*, vol. 32, no. 9, pp. 957-967, 2010.

[97] C. M. Quick, W. L. Young, and A. Noordergraaf, â€œInfinite number of solutions to the hemodynamic inverse problem.,â€ *Am. J. Physiol. Heart Circ. Physiol.*, vol. 280, no. 4, pp. H1472--9, 2001.

[98] C. M. Quick, D. S. Berger, R. H. Stewart, G. A. Laine, C. J. Hartley, and A. Noordergraaf, â€œResolving the Hemodynamic Inverse Problem,â€ *Biomed. Eng. IEEE Trans.*, vol. 53, no. 3, pp. 361â€“368, 2006.

[99] M. U. Qureshi, G. D. A. Vaughan, C. Sainsbury, M. Johnson, C. S. Peskin, M. S. Olufsen, and N. A. Hill, â€œNumerical simulation of blood flow and pressure drop in the pulmonary arterial and venous circulation,â€ *Biomech. Model. Mechanobiol.*, vol. 13, no. 5, pp. 1137â€“1154, 2014.

[100] J. Wan, B. Steele, S. A. Spicer, S. Strohband, G. R. FeijoÂ´o, T. J. R. Hughes, C. A. Taylor, and G. R. Feij O, â€œA One-dimensional Finite Element Method for Simulation-based Medical Planning for Cardiovascular Disease) A One-dimensional Finite Element Method for Simulation-based Medical Planning for A One-dimensional Finite Element Method for Simulation- based Medic,â€ *Comput. Methods Biomech. Biomed. Engin.*, vol. 53, no. November 2014, pp. 195â€“206, 2010.

[101] B. S. Brook, S. A. E. G. Falle, and T. J. Pedley, â€œNumerical solutions for unsteady gravity driven flows in collapsible tubes{:} evolution and roll wave instability of a steady state,â€ *J. Fluid Mech.*, vol. 396, pp. 223â€“256, 1999.

[102] J. Alastruey, S. R. Nagel, B. A. Nier, A. A. E. E. Hunt, P. D. Weinberg, J. PeirÃ³, D. Peter, and J. PeirÃ³, â€œModelling pulse wave propagation in the rabbit systemic circulation to assess the effects of altered nitric oxide synthesis,â€ *J. Biomech.*, vol. 42, no. 13, pp. 2116â€“2123, 2009.

[103] J. Wang, K. I. M. H. Parker, J. V Tyberg, and K. H. Parker, â€œLeft ventricular wave speed,â€ *Science (80-. ).*, pp. 2531â€“2536, 2001.

[104] Z. Wang, â€œAssessment of left ventricular diastolic suction in dogs using wave-intensity analysis,â€ *AJP Hear. Circ. Physiol.*, vol. 288, no. 4, pp. H1641â€“H1651, 2004.

[105] A. Zambanini, â€œWave-energy patterns in carotid, brachial, and radial arteries: a noninvasive approach using wave-intensity analysis,â€ *AJP Hear. Circ. Physiol.*, vol. 289, no. 1, pp. H270â€“H276, 2005.

[106] Y. H. Sun, T. J. Anderson, K. H. Parker, and J. V Tyberg, â€œWave-intensity analysis: a new approach to coronary hemodynamics,â€ *J Appl Physiol*, vol. 89, no. 4, pp. 1636â€“1644, 2000.

[107] E. H. Hollander, J. J. Wang, G. M. Dobson, K. H. Parker, and J. V Tyberg, â€œNegative wave reflections in pulmonary arteries.,â€ *Am. J. Physiol. Heart Circ. Physiol.*, vol. 281, no. 2, pp. H895-902, 2001.

[108] E. H. Hollander, G. M. Dobson, J. Wang, K. H. Parker, and J. V Tyberg, â€œDirect and series transmission of left atrial pressure perturbations to the pulmonary artery: a study using wave-intensity analysis.,â€ *Am. J. Physiol. Heart Circ. Physiol.*, vol. 286, no. 1, pp. H267-75, 2004.

[109] P. J. Blanco, R. A. FeijÃ³o, and S. A. Urquiza, â€œA unified variational approach for coupling 3D-1D models and its blood flow applications,â€ *Comput. Methods Appl. Mech. Eng.*, vol. 196, no. 41â€“44, pp. 4391â€“4410, 2007.

[110] L. Formaggia, A. Quarteroni, and C. Vergara, â€œOn the physical consistency between three-dimensional and one-dimensional models in haemodynamics,â€ *J. Comput. Phys.*, vol. 244, no. July 2015, pp. 92â€“112, 2013.

[111] C. Sheng, S. N. Sarwal, K. C. Watts, and a E. Marble, â€œComputational simulation of blood flow in human systemic circulation incorporating an external force field.,â€ *Med. Biol. Eng. Comput.*, vol. 33, no. January, pp. 8â€“17, 1995.

[112] G. A. Sod, â€œA survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws,â€ *J. Comput. Phys.*, vol. 27, no. 1, pp. 1â€“31, 1978.

[113] P. Moczo, J. O. A. Robertsson, and L. Eisner, â€œThe Finite-Difference Time-Domain Method for Modeling of Seismic Wave Propagation,â€ in *Advances in Wave Propagation in Heterogenous Earth*, vol. 48, R.-S. Wu, V. Maupin, and R. Dmowska, Eds. Elsevier, 2007, pp. 421â€“516.

[114] A. Taï¬‚ove, â€œComputational Electrodynamics,â€ *Artech House, Norwood, MA*, 1998.

[115] S. Mazumder, â€œChapter 2 - The Finite Difference Method,â€ in *Numerical Methods for Partial Differential Equations*, S. Mazumder, Ed. Academic Press, 2016, pp. 51â€“101.

[116] P. C. Azer K, â€œA one-dimensional model of blood flow in arteries with friction and convection based on the Womersley velocity profile.,â€ *Cardiovasc. Eng.*, vol. 7, pp. 51â€“73, 2007.

[117] L. H. Liang F, Takagi S, Himeno R, â€œBiomechanical characterization of ventricularâ€“arterial coupling during aging: a multi-scale model study.,â€ *J. Biomech.*, vol. 42, pp. 692â€“704, 2009.

[118] N. P. Smith, A. J. Pullan, and P. J. Hunter, â€œAn Anatomically Based Model of Transient Coronary Blood Flow in the Heart,â€ *SIAM J. Appl. Math.*, vol. 62, no. 3, pp. 990â€“1018, 2002.

[119] B. Etienne, N. Perumal, B. P. J., M. L. O., F. F. Eikeland, H. L. Rune, D. W. P., H. Wouter, W. Marie, and A. Jordi, â€œA benchmark study of numerical schemes for oneâ€dimensional arterial blood flow modelling,â€ *Int. j. numer. method. biomed. eng.*, vol. 31, no. 10, p. e02732.

[120] X. Wang, "1D modeling of blood flow in networks: numerical computing and applications", Ph.D., UniversitÃ© Pierre et Marie Curie-Paris VI, 2014.

[121] S. A. Toro E, â€œFlow in collapsible tubes with discontinuous mechanical properties: mathematical model and exact solutions,â€ *Commun. Comput. Phys.*, vol. 13, pp. 361â€“385, 2013.

[122] T. E. MÃ¼ller L, â€œWell balanced high order solver for blood flow in networks of vessels with variable properties.,â€ *Int. J. Numer. Methods Biomed. Eng.*, vol. 29, pp. 1388â€“1411, 2013.

[123] E. F. Toro, â€œThe Equations of Fluid Dynamics,â€ *Riemann Solvers Numer. Methods Fluid Dyn.*, no. 1, pp. 1â€“40, 2009.

[124] R. Eymard, T. Gallouet, and R. Herbin, â€œFinite Volume Methods,â€ vol. M, no. January, 2006.

[125] R. J. LeVeque, â€œFinite Volume Methods for Hyperbolic Problems,â€ *Cambridge Univ. Press*, vol. 54, p. 258, 2002.

[126] J. N. Reddy, *An Introduction to Nonlinear Finite Element Analysis: with applications to heat transfer, fluid mechanics, and solid mechanics*. Oxford,G.B.: Oxford University Press, 2015.

[127] D. L. Logan, *A First Course In The Finite Element Method*. 2012.

[128] O. C. Zienkiewicz, R. L. Taylor, and J. Z. Zhu, *The Finite Element Method: Its Basis and Fundamentals*, 7th ed. Oxford,G.B.: Butterworth-Heinemann, 2013.

[129] F. R. Watanabe S, Blanco P, â€œMathematical model of blood flow in an anatomically detailed arterial network of the arm.,â€ *ESAIM Math. Model. Numer. Anal.*, vol. 47, pp. 961â€“985, 2013.

[130] D. J. Brown, â€œBrown - Input Impedance and Reflection Coefficient in Fractal-Like Models of Asymmetrically Branching Compliant Tubes.PDF,â€ vol. 43, no. 7, 1996.

[131] Y. Huo and G. S. Kassab, â€œA hybrid one-dimensional/Womersley model of pulsatile blood flow in the entire coronary arterial tree,â€ *AJP Hear. Circ. Physiol.*, vol. 292, no. 6, pp. H2623â€“H2633, 2007.

[132] D. Bessems, C. G. Giannopapa, M. C. M. Rutten, and F. N. van de Vosse, â€œExperimental validation of a time-domain-based wave propagation model of blood flow in viscoelastic vessels,â€ *J. Biomech.*, vol. 41, no. 2, pp. 284â€“291, 2008.

[133] A. Noordergraaf, P. D. Verdouw, and H. B. K. Boom, â€œThe use of an analog computer in a circulation model,â€ *Prog. Cardiovasc. Dis.*, vol. 5, no. 5, pp. 419â€“439, 1963.

[134] M. Matsumori, H. Tanaka, Y. Kawanishi, T. Onishi, K. Nakagiri, T. Yamashita, K. Okada, and Y. Okita, â€œComparison of distensibility of the aortic root and cusp motion after aortic root replacement with two reimplantation techniques: Valsalva graft versus tube graftâ˜†,â€ *Interact. Cardiovasc. Thorac. Surg.*, vol. 6, no. 2, pp. 177â€“181, 2007.

[135] I. E. Vignon and C. A. Taylor, â€œOutflow boundary conditions for one-dimensional finite element modeling of blood flow and pressure waves in arteries,â€ *Wave Motion*, vol. 39, no. 4, pp. 361â€“374, 2004.

[136] B. Steele, M. Olufsen, and C. Taylor, â€œFractal Network model for simulating abdominal and lower extremity blood flow during resting and exercise conditions,â€ *Comput. Methods Biomech. Biomed. Engin.*, vol. 10, pp. 39â€“51, 2007.

[137] R. Spilker, J. Feinstein, D. W Parker, V. Reddy, and C. Taylor, â€œMorphometry-Based Impedance Boundary Conditions for Patient-Specific Modeling of Blood Flow in Pulmonary Arteries,â€ *Ann. Biomed. Eng.*, vol. 35, pp. 546â€“559, 2007.

[138] L. Grinberg and G. E. Karniadakis, â€œOutflow boundary conditions for arterial networks with multiple outlets,â€ *Ann. Biomed. Eng.*, vol. 36, no. 9, pp. 1496â€“1514, 2008.

[139] N. Westerhof, J.W. Lankhaar, B.E. Westerhof, â€œThe arterial Windkessel.â€ *Medical & biological engineering & computing*, *47*(2), pp.131-141.