Blood Flow Modelling to Improve Cardiovascular Diagnostics: a Preliminary Review of 1D Modelling
 Abstract
 Keywords
 References

Abstract
Cardiovascular diseases issue an enormous threat to the health and general wellbeing of the population, therefore multidisciplinary knowledge of the cardiovascular system and its mechanics has become a necessity. Due to the lack of wide scale experimental studies, the limitations associated with it and the immense advances in computational technology, in recent years, numerical modelling of the cardiovascular system has gained popularity as a viable alternative. Onedimensional models as compared to higher dimensional models provide a feasible and efficient means to study the dynamics of pulse wave propagation in order to increase the comprehension of circulatory physiology. The aim of this paper is to provide an overall review of the types, solution methods, treatment of boundary conditions, applications and advantages as well as disadvantages of onedimensional models of the human arterial network.

Keywords
Arterial network; Blood flow modelling; Computational fluid dynamics; Numerical modelling; Onedimensional model

References
[1] S. Epstein, M. Willemet, P. J. Chowienczyk, and J. Alastruey, “Reducing the number of parameters in 1D arterial blood flow modeling: less is more for patientspecific simulations,” Am. J. Physiol.  Hear. Circ. Physiol., vol. 309, no. 1, pp. H222–H234, 2015.
[2] Kearney, M. Whelton, K. Reynolds, P. Muntner, P. Whelton and J. HE, "Global burden of hypertension: analysis of worldwide data", The Lancet, vol. 365, no. 9455, pp. 217223, 2005.
[3] A. Avolio, “Multibranched model of the human arterial system,” Med. Biol. Eng. Comput., vol. 18, no. 6, pp. 709–718, 1980.
[4] N. Stergiopulos, D. F. Young, and T. R. Rogge, “Computer simulation of arterial flow with applications to arterial and aortic stenoses,” J. Biomech., vol. 25, no. 12, pp. 1477–1488, 1992.
[5] M. S. Olufsen, C. S. Peskin, W. Y. Kim, E. M. Pedersen, A. Nadim, and J. Larsen, “Numerical simulation and experimental validation of blood flow in arteries with structuredtree outflow conditions,” Ann. Biomed. Eng., vol. 28, no. 11, pp. 1281–1299, 2000.
[6] L. Formaggia, D. Lamponi and A. Quarteroni, "Onedimensional models for blood flow in arteries", Journal of Engineering Mathematics, vol. 47, no. 34, pp. 251276, 2003.
[7] S. J. Sherwin, V. Franke, J. Peiró, and K. Parker, “Onedimensional modelling of a vascular network in spacetime variables,” J. Eng. Math., vol. 47, no. 3–4, pp. 217–250, 2003.
[8] D. Bessems, M. Rutten, and F. Van De Vosse, “A wave propagation model of blood flow in large vessels using an approximate velocity profile function,” J. Fluid Mech., vol. 580, pp. 145–168, 2007.
[9] L. R. Hellevik, J. Vierendeels, T. Kiserud, N. Stergiopulos, F. Irgens, E. Dick, K. Riemslagh, and P. Verdonck, “An assessment of ductus venosus tapering and wave transmission from the fetal heart,” Biomech. Model. Mechanobiol., vol. 8, no. 6, pp. 509–517, 2009.
[10] P. R. Leinan, “Biomechanical modeling of fetal veins: The umbilical vein and ductus venosus bifurcation,” no. November, p. 124, 2012.
[11] V. G. Eck, J. Feinberg, H. P. Langtangen, and L. R. Hellevik, “Stochastic sensitivity analysis for timing and amplitude of pressure waves in the arterial system,” Int. j. numer. method. biomed. eng., vol. 31, no. 4, p. e02711, 2015.
[12] J. P. Mynard, “Onedimensional Blood Flow Modelling with the Locally Conservative Galerkin ( LCG ) Method,” no. November, 2007.
[13] K. Low, R. van Loon, I. Sazonov, R. Bevan and P. Nithiarasu, "An improved baseline model for a human arterial network to study the impact of aneurysms on pressureflow waveforms", International Journal for Numerical Methods in Biomedical Engineering, vol. 28, no. 12, pp. 12241246, 2012.
[14] T. E. Müller L, “A global multiscale mathematical model for the human circulation with emphasis on the venous system A global multiscale mathematical model for the human circulation with emphasis on the venous system,” Int. j. numer. method. biomed. eng., vol. 30, no. 7, pp. 681–725, 2014.
[15] L. Formaggia, F. Nobile, and A. Quarteroni, “A One Dimensional Model for Blood Flow: Application to Vascular Prosthesis,” in Mathematical Modeling and Numerical Simulation in Continuum Mechanics, 2002, pp. 137–153.
[16] T. E. Müller L, “An enhanced closedloop model for the study of cerebral venous blood flow.,” J. Biomech., vol. 47, no. 13, pp. 3361–3372, 2014.
[17] P. J. Blanco, S. M. Watanabe, E. A. Dari, M. A. R. F. Passos, and R. A. Feijóo, “Blood flow distribution in an anatomically detailed arterial network model: criteria and algorithms,” Biomech. Model. Mechanobiol., vol. 13, no. 6, pp. 1303–1330, 2014.
[18] F. R. Blanco P, Watanabe S, “Identification of vascular territory resistances in onedimensional hemodynamics simulations.,” J. Biomech., vol. 45, no. 12, pp. 2066–2073, 2012.
[19] F. R. Blanco P, Watanabe S, Passos M, Lemos P, “An anatomically detailed arterial network model for one dimensional computational hemodynamics.,” IEEE Trans. Biomed. Eng., vol. 62, pp. 736–753, 2015.
[20] J. Wan, B. Steele, S. A. Spicer, S. Strohband, G. R. Feijo´o, T. J. R. Hughes, C. A. Taylor, G. R. Feijóo, T. J. R. Hughes, and C. A. Taylor, “A onedimensional finite element method for simulationbased medical planning for cardiovascular disease,” Comput. Methods Biomech. Biomed. Engin., vol. 5, no. 3, pp. 195–206, 2002.
[21] S. J. Sherwin, L. Formaggia, and J. Peiró, “Computational modelling of 1D blood flow with variable mechanical properties and its application to the simulation of wave propagation in the human arterial system,” Int. J. Numer. Methods Fluids, vol. 700, no. April 2002, pp. 673–700, 2003.
[22] S. A. Urquiza, P. J. Blanco, M. J. Vénere, and R. A. Feijóo, “Multidimensional modelling for the carotid artery blood flow,” Comput. Methods Appl. Mech. Eng., vol. 195, no. 33–36, pp. 4002–4017, 2006.
[23] T. J. R. Hughes and J. Lubliner, “On the onedimensional theory of blood flow in the larger vessels,” Math. Biosci., vol. 18, no. 1–2, pp. 161–170, 1973.
[24] J. C. Stettler, P. Niederer, M. Anliker, and M. Casty, “Theoretical analysis of arterial hemodynamics including the influence of bifurcations. Part II: critical evaluation of theoretical model and comparison with noninvasive measurements of flow patterns in normal and pathological cases.,” Ann. Biomed. Eng., vol. 9, pp. 165–175, 1981.
[25] N. Stergiopulos, “Computer simulation of arterial blood flow,” 1990.
[26] P. Reymond, F. Merenda, F. Perren, D. Rüfenacht, and N. Stergiopulos, “Validation of a onedimensional model of the systemic arterial tree.,” Am. J. Physiol. Heart Circ. Physiol., vol. 297, no. 1, pp. H208–H222, 2009.
[27] M. S. Olufsen, “Structured tree outflow condition for blood flow in larger systemic arteries.,” Am J Physiol, vol. 276, no. 1 Pt 2, pp. H257H268, 1999.
[28] J. Alastruey, A. W. Khir, K. S. Matthys, P. Segers, S. J. Sherwin, P. R. Verdonck, K. H. Parker, and J. Peiró, “Pulse wave propagation in a model human arterial network: Assessment of 1D viscoelastic simulations against in vitro measurements,” J. Biomech., vol. 44, no. 12, pp. 2250–2258, 2011.
[29] R. G. . Richardson, The surgeon’s heart. Cox & Wyman Ltd., 1969.
[30] W. K., The story of blood. London: Jenkins, 1958.
[31] M. ElMaghawry, A. Zanatta, and F. Zampieri, “The discovery of pulmonary circulation: From Imhotep to William Harvey,” Glob. Cardiol. Sci. Pract., vol. 2014, no. 2, p. 31, 2014.
[32] D. W. R. Alfred P. Fishman, Ed., Circulation of the blood: men and ideas. Oxford University Press, 1964.
[33] A. Alastruey, “Numerical modelling of pulse wave propagation in the cardiovascular system: development, validation and clinical applications.,” Ph.D. dissertation, 2006.
[34] L. Euler, Principia pro motu sanguinis per arterias determinando, vol. 2:814823, no. 1844 detecta. 1775.
[35] Y. C. Fung, Biomechanics: Circulation, Second Edi. Springer, 1997.
[36] D. L. Kline, Thomas Young, Forgotton Genius: An Annotated Narrative Biography. Cincinnati: Vidan Press, 1993.
[37] T. Young, “Hydraulic investigations, subservient to an intended Croonian lecture on the motion of the blood,” Phil. Trans. Roy. Soc., London, no. 98, pp. 164–186, 1808.
[38] A. I. Moens, “Over de voortplantingssnelheid von del pols (on the speed of propagation of the pulse),” Leiden, 1877.
[39] P. Chemie and A. T. D. Korteweg, “Fortpflanzungsgeschwindigkeit des Schalles in elastischen R ¨ ohren ( Sur la transmission du son par les fluides renferm ´ es dans les tubes ` a parois ´ elastiques ); Ann . der,” vol. 9, no. 1, pp. 127–134, 1880.
[40] B. Riemann, “Gesammelte mathematische Werke und wissenschaftlicher Nachlass,” Liepzig, 1876.
[41] J. R. Womersley, “An elastic tube theory of pulse transmission and oscillatory flow in mammalian arteries,” 1957.
[42] W. Nichols, M. O’Rourke, and C. Vlachopoulos, “Mcdonaldʼs Blood Flow in Arteries,” Shock, vol. 9, no. 6, p. 456, 1998.
[43] N. Westerhof, F. Bosman, C. J. De Vries, and A. Noordergraaf, “Analog studies of the human systemic arterial tree,” J. Biomech., vol. 2, no. 2, pp. 121–143, 1969.
[44] M. E. H. van Dongen, F.N. van de Vosse, “Cardiovascular Fluid Mechanics,” Lect. notes, 1998.
[45] W. K. Purves, D. Sadava, and G. H. Orians, “Life: The Science of Biology,” p. 1121, 2004.
[46] M. S. Olufsen, “Modeling of the Arterial System with Reference to an Anesthesia Simulator,” Dep. Math., vol. Ph.D. dissertation, p. 199, 1998.
[47] S. Vogel and R. A. Calvert, “Vital circuits: on pumps, pipes, and the workings of circulatory systems,” p. 315, 1993.
[48] N. Best, C; Taylor, The Physiological Basis of Medical Practice, 11th ed. Newyork, USA: Williams and Wilkins, 1985.
[49] E. Le, “Biology notes for IGCSE 2014,” 2014. [Online]. Available: http://biologyigcse.weebly.com/arteriesveinsandcapillariesstructureandfunctions.html.
[50] M. S. Olufsen, “Structured tree outflow condition for blood flow in larger systemic arteries.,” Am J Physiol, vol. 276, no. 1 Pt 2, pp. H257H268, 1999.
[51] D. A. McDonald, “Profiles in cardiology.,” Clin. Cardiol., vol. 16, pp. 842–843, 1993.
[52] Y. Tardy, J. J. Meister, F. Perret, H. R. Brunner, and M. Arditi, “Noninvasive estimate of the mechanical properties of peripheral arteries from ultrasonic and photoplethysmographic measurements,” Clin. Phys. Physiol. Meas., vol. 12, no. 1, pp. 39–54, 1991.
[53] P. R. Wheater, H. G. Burkitt, and V. G. Daniels, Functional histology : a text and colour atlas. Edinburgh,G.B.: Churchill Livingstone, 1979.
[54] W. Caro, C G, Pedley, T, Schroter,R and Seed, The Mechanics of the Circulation. Oxford,G.B.: Oxford University Press, 1978.
[55] X. Wang, “computing and applications 1D modeling of blood flow in networks : numerical computing and applications,” HAL Id tel01149085, 2015.
[56] T. Pedley, The Fluid Mechanics of Large Blood Vessels. Cambridge,G.B.: Cambridge University Press, 1980.
[57] Y. Shi, P. Lawford, and R. Hose, “Review of zeroD and 1D models of blood flow in the cardiovascular system.,” Biomed. Eng. Online, vol. 10, no. 1, p. 33, 2011.
[58] P. Kakar and G. Y. H. Lip, “Towards understanding the aetiology and pathophysiology of human hypertension: Where are we now?,” Journal of Human Hypertension, vol. 20, no. 11. pp. 833–836, 2006.
[59] P. J. Blanco, M. R. Pivello, S. A. Urquiza, and R. A. Feijóo, “On the potentialities of 3D1D coupled models in hemodynamics simulations,” J. Biomech., vol. 42, no. 7, pp. 919–930, 2009.
[60] I. E. VignonClementel, A. L. Marsden, and J. A. Feinstein, “A primer on computational simulation in congenital heart disease for the clinician,” Prog. Pediatr. Cardiol., vol. 30, no. 1–2, pp. 3–13, 2010.
[61] S. Sankaran, M. E. Moghadam, A. M. Kahn, E. E. Tseng, J. M. Guccione, and A. L. Marsden, “Patientspecific multiscale modeling of blood flow for coronary artery bypass graft surgery,” Ann. Biomed. Eng., vol. 40, no. 10, pp. 2228–2242, 2012.
[62] F. Cuomo, S. Roccabianca, D. DillonMurphy, N. Xiao, J. D. Humphrey, and C. A. Figueroa, “Effects of ageassociated regional changes in aortic stiffness on human hemodynamics revealed by computational modeling,” PLoS One, vol. 12, no. 3, pp. 1–21, 2017.
[63] F. C. Xiao N, Alastruey J, “A systematic comparison between 1D and 3D hemodynamics in compliant arterial models.,” Int. J. Numer. Methods Biomed. Eng., vol. 30, pp. 204–231, 2014.
[64] S. Čanić and E. H. Kim, “Mathematical analysis of the quasilinear effects in a hyperbolic model blood flow through compliant axisymmetric vessels,” Math. Methods Appl. Sci., vol. 26, no. July 2002, pp. 1161–1186, 2003.
[65] V. L. Streeter, W. F. Keitzer, and D. F. Bohr, “Pulsatile Pressure and Flow Through Distensible Vessels,” Circ. Res., vol. 13, no. 1, pp. 3–20, 1963.
[66] A. P. Schaaf B, “Digital computer simulation of human systemic arterial pulse wave transmission: a nonlinear model.,” J. Biomech., vol. 5, pp. 345–364, 1972.
[67] A. H. Shapiro, “Steady Flow in Collapsible Tubes,” J. Biomech. Eng., vol. 99, pp. 126–147, 1977.
[68] B. S. Brook, S. A. E. G. Falle, and T. J. Pedley, “Numerical solutions for unsteady gravitydriven flows in collapsible tubes: evolution and rollwave instability of a steady state,” J. Fluid Mech., vol. 396, pp. 223–256, 1999.
[69] W. E. Bodley, “The nonlinearities of arterial blood flow,” Phys. Med. Biol., vol. 16, no. 4, pp. 663–672, 1971.
[70] C. W. Li and H. D. Cheng, “A nonlinear fluid model for pulmonary blood circulation,” J. Biomech., vol. 26, no. 6, pp. 653–664, 1993.
[71] B. S. Brook and T. J. Pedley, “A model for timedependent flow in (giraffe jugular) veins: Uniform tube properties,” J. Biomech., vol. 35, no. 1, pp. 95–107, 2002.
[72] L. Formaggia, J. F. Gerbeau, F. Nobile, and A. Quarteroni, “On the coupling of 3D and 1D NavierStokes equations for flow problems in compliant vessels,” Comput. Methods Appl. Mech. Eng., vol. 191, no. 6–7, pp. 561–582, 2001.
[73] J. J. Wang and K. H. Parker, “Wave propagation in a model of the arterial circulation,” J. Biomech., vol. 37, no. 4, pp. 457–470, 2004.
[74] J. J. Wang, A. B. O’Brien, N. G. Shrive, K. H. Parker, and J. V Tyberg, “Timedomain representation of ventriculararterial coupling as a windkessel and wave system.,” Am. J. Physiol. Heart Circ. Physiol., vol. 284, no. 4, pp. H1358–H1368, 2003.
[75] G. Pontrelli and E. Rossoni, “Numerical modelling of the pressure wave propagation in the arterial ow,” Int. J. Numer. Methods Fluids, vol. 671, no. March 2002, pp. 651–671, 2003.
[76] K. H. Parker and C. J. H. Jones, “Forward and Backward Running Waves in the Arteries: Analysis Using the Method of Characteristics,” J. Biomech. Eng., vol. 112, no. 3, p. 322, 1990.
[77] E. Rooz, D. F. Young, and T. R. Rogge, “A finiteelement simulation of pulsatile flow in flexible tubes,” J. Biomech. Eng., vol. 104, no. May 1982, pp. 119–124, 1982.
[78] G. Porenta, D. F. Young, and T. R. Rogge, “A FiniteElement Model of Blood Flow in Arteries Including Taper, Branches, and Obstructions,” J. Biomech. Eng., vol. 108, no. 2, p. 161, 1986.
[79] I. Surovtsova, “Effects of compliance mismatch on blood flow in an artery with endovascular prosthesis,” J. Biomech., vol. 38, no. 10, pp. 2078–2086, 2005.
[80] D. Elad, D. Katz, E. Kimmel, and S. Einav, “Numerical schemes for unsteady fluid flow through collapsible tubes,” J. Biomed. Eng., vol. 13, no. 1, pp. 10–18, 1991.
[81] A. J. Pullan, N. P. Smith, and P. J. Hunter, “An anatomically based model of transient coronary blood flow in the heart,” SIAM J. Appl. Math., vol. 62, no. 3, pp. 990–1018, 2002.
[82] J. K. Raines, M. Y. Jaffrin, and A. H. Shapiro, “A computer simulation of arterial dynamics in the human leg,” J. Biomech., vol. 7, no. 1, pp. 77–91, 1974.
[83] P. J. Reuderink, H. W. Hoogstraten, P. Sipkema, B. Hillen, N. Westerhof, N. Onedimensional, O. F. Pulse, W. Transmission, and A. T. High, “Linear and nonlinear onedimensional models of pulse wave transmission at high womersley numbers,” J. Biomech., vol. 22, no. 819, pp. 819–827, 1989.
[84] G. Perdikaris, P, Grinberg, L, Karniadakis, “An Effective FractalTree Closure Model for Simulating Blood Flow in Large Arterial Networks,” Ann. Biomed. Eng., vol. 43, no. 6, pp. 1432–1442, 2015.
[85] T. Sochi, “The flow of power law fluids in elastic networks and porous media,” Comput. Methods Biomech. Biomed. Engin., vol. 19, no. 3, pp. 324–329, 2016.
[86] B. N. Steele, J. Wan, J. P. Ku, T. J. R. Hughes, and C. A. Taylor, “In vivo validation of a onedimensional finiteelement method for predicting blood flow in cardiovascular bypass grafts,” IEEE Trans. Biomed. Eng., vol. 50, no. 6, pp. 649–656, 2003.
[87] K. Devault, P. A. Gremaud, V. Novak, M. S. Olufsen, G. V. Eres, and P. Zhao, “Blood flow in the circle of willis: Modelling and Calibration,” Multiscale Model. Simul., vol. 7, no. 2, pp. 888–909, 2008.
[88] P. Reymond, Y. Bohraus, F. Perren, F. Lazeyras, and N. Stergiopulos, “Validation of a patientspecific onedimensional model of the systemic arterial tree,” Blood, pp. 1173–1183, 2011.
[89] B. N. Steele, C. A. Taylor, J. Wan, J. P. Ku, and T. J. R. Hughes, “In vivo validation of a onedimensional finite element method for simulationbased medical planning for cardiovascular bypass surgery,” in Annual Reports of the Research Reactor Institute, Kyoto University, 2001, vol. 1, no. 5, pp. 120–123.
[90] M. Willemet, V. Lacroix, and E. Marchandise, “Validation of a 1D patientspecific model of the arterial hemodynamics in bypassed lowerlimbs: Simulations against in vivo measurements,” Med. Eng. Phys., vol. 35, no. 11, pp. 1573–1583, 2013.
[91] C. Audebert, P. Bucur, M. Bekheit, E. Vibert, I. E. VignonClementel, and J.F. Gerbeau, “Kinetic scheme for arterial and venous blood flow, and application to partial hepatectomy modeling,” Comput. Methods Appl. Mech. Eng., vol. 314, 2017.
[92] E. Marchandise, M. Willemet, and V. Lacroix, “A numerical hemodynamic tool for predictive vascular surgery,” Med. Eng. Phys., vol. 31, no. 1, pp. 131–144, 2009.
[93] A. R. Ghigo, P. Lagrée, and X. Wang, “Onedimensional Arterial Network Model for Bypass Grafts Assessment a rXiv  H AL,” pp. 1–17.
[94] M. Saito, P. Mariecurie, and I. Jean, “Onedimensional modeling of pulse wave for a human artery model,” 2010.
[95] A. X. Wang, O. Delestre, J.M. Fullana, M. Saito, Y. Ikenaga, M. Matsukawa and P.Y. Lagee., “Comparing different numerical methods for solving arterial 1d flows in networks.,” Comput. Methods Biomech. Biomed. Engin., vol. 15(sup1), pp. 61–62, 2012.
[96] C. Leguy, E. Bosboom, H. Gelderblom, A. Hoeks and F. van de Vosse, "Estimation of distributed arterial mechanical properties using a wave propagation model in a reverse way", Medical Engineering & Physics, vol. 32, no. 9, pp. 957967, 2010.
[97] C. M. Quick, W. L. Young, and A. Noordergraaf, “Infinite number of solutions to the hemodynamic inverse problem.,” Am. J. Physiol. Heart Circ. Physiol., vol. 280, no. 4, pp. H14729, 2001.
[98] C. M. Quick, D. S. Berger, R. H. Stewart, G. A. Laine, C. J. Hartley, and A. Noordergraaf, “Resolving the Hemodynamic Inverse Problem,” Biomed. Eng. IEEE Trans., vol. 53, no. 3, pp. 361–368, 2006.
[99] M. U. Qureshi, G. D. A. Vaughan, C. Sainsbury, M. Johnson, C. S. Peskin, M. S. Olufsen, and N. A. Hill, “Numerical simulation of blood flow and pressure drop in the pulmonary arterial and venous circulation,” Biomech. Model. Mechanobiol., vol. 13, no. 5, pp. 1137–1154, 2014.
[100] J. Wan, B. Steele, S. A. Spicer, S. Strohband, G. R. Feijo´o, T. J. R. Hughes, C. A. Taylor, and G. R. Feij O, “A Onedimensional Finite Element Method for Simulationbased Medical Planning for Cardiovascular Disease) A Onedimensional Finite Element Method for Simulationbased Medical Planning for A Onedimensional Finite Element Method for Simulation based Medic,” Comput. Methods Biomech. Biomed. Engin., vol. 53, no. November 2014, pp. 195–206, 2010.
[101] B. S. Brook, S. A. E. G. Falle, and T. J. Pedley, “Numerical solutions for unsteady gravity driven flows in collapsible tubes{:} evolution and roll wave instability of a steady state,” J. Fluid Mech., vol. 396, pp. 223–256, 1999.
[102] J. Alastruey, S. R. Nagel, B. A. Nier, A. A. E. E. Hunt, P. D. Weinberg, J. Peiró, D. Peter, and J. Peiró, “Modelling pulse wave propagation in the rabbit systemic circulation to assess the effects of altered nitric oxide synthesis,” J. Biomech., vol. 42, no. 13, pp. 2116–2123, 2009.
[103] J. Wang, K. I. M. H. Parker, J. V Tyberg, and K. H. Parker, “Left ventricular wave speed,” Science (80. )., pp. 2531–2536, 2001.
[104] Z. Wang, “Assessment of left ventricular diastolic suction in dogs using waveintensity analysis,” AJP Hear. Circ. Physiol., vol. 288, no. 4, pp. H1641–H1651, 2004.
[105] A. Zambanini, “Waveenergy patterns in carotid, brachial, and radial arteries: a noninvasive approach using waveintensity analysis,” AJP Hear. Circ. Physiol., vol. 289, no. 1, pp. H270–H276, 2005.
[106] Y. H. Sun, T. J. Anderson, K. H. Parker, and J. V Tyberg, “Waveintensity analysis: a new approach to coronary hemodynamics,” J Appl Physiol, vol. 89, no. 4, pp. 1636–1644, 2000.
[107] E. H. Hollander, J. J. Wang, G. M. Dobson, K. H. Parker, and J. V Tyberg, “Negative wave reflections in pulmonary arteries.,” Am. J. Physiol. Heart Circ. Physiol., vol. 281, no. 2, pp. H895902, 2001.
[108] E. H. Hollander, G. M. Dobson, J. Wang, K. H. Parker, and J. V Tyberg, “Direct and series transmission of left atrial pressure perturbations to the pulmonary artery: a study using waveintensity analysis.,” Am. J. Physiol. Heart Circ. Physiol., vol. 286, no. 1, pp. H26775, 2004.
[109] P. J. Blanco, R. A. Feijóo, and S. A. Urquiza, “A unified variational approach for coupling 3D1D models and its blood flow applications,” Comput. Methods Appl. Mech. Eng., vol. 196, no. 41–44, pp. 4391–4410, 2007.
[110] L. Formaggia, A. Quarteroni, and C. Vergara, “On the physical consistency between threedimensional and onedimensional models in haemodynamics,” J. Comput. Phys., vol. 244, no. July 2015, pp. 92–112, 2013.
[111] C. Sheng, S. N. Sarwal, K. C. Watts, and a E. Marble, “Computational simulation of blood flow in human systemic circulation incorporating an external force field.,” Med. Biol. Eng. Comput., vol. 33, no. January, pp. 8–17, 1995.
[112] G. A. Sod, “A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws,” J. Comput. Phys., vol. 27, no. 1, pp. 1–31, 1978.
[113] P. Moczo, J. O. A. Robertsson, and L. Eisner, “The FiniteDifference TimeDomain Method for Modeling of Seismic Wave Propagation,” in Advances in Wave Propagation in Heterogenous Earth, vol. 48, R.S. Wu, V. Maupin, and R. Dmowska, Eds. Elsevier, 2007, pp. 421–516.
[114] A. Taﬂove, “Computational Electrodynamics,” Artech House, Norwood, MA, 1998.
[115] S. Mazumder, “Chapter 2  The Finite Difference Method,” in Numerical Methods for Partial Differential Equations, S. Mazumder, Ed. Academic Press, 2016, pp. 51–101.
[116] P. C. Azer K, “A onedimensional model of blood flow in arteries with friction and convection based on the Womersley velocity profile.,” Cardiovasc. Eng., vol. 7, pp. 51–73, 2007.
[117] L. H. Liang F, Takagi S, Himeno R, “Biomechanical characterization of ventricular–arterial coupling during aging: a multiscale model study.,” J. Biomech., vol. 42, pp. 692–704, 2009.
[118] N. P. Smith, A. J. Pullan, and P. J. Hunter, “An Anatomically Based Model of Transient Coronary Blood Flow in the Heart,” SIAM J. Appl. Math., vol. 62, no. 3, pp. 990–1018, 2002.
[119] B. Etienne, N. Perumal, B. P. J., M. L. O., F. F. Eikeland, H. L. Rune, D. W. P., H. Wouter, W. Marie, and A. Jordi, “A benchmark study of numerical schemes for one‐dimensional arterial blood flow modelling,” Int. j. numer. method. biomed. eng., vol. 31, no. 10, p. e02732.
[120] X. Wang, "1D modeling of blood flow in networks: numerical computing and applications", Ph.D., Université Pierre et Marie CurieParis VI, 2014.
[121] S. A. Toro E, “Flow in collapsible tubes with discontinuous mechanical properties: mathematical model and exact solutions,” Commun. Comput. Phys., vol. 13, pp. 361–385, 2013.
[122] T. E. Müller L, “Well balanced high order solver for blood flow in networks of vessels with variable properties.,” Int. J. Numer. Methods Biomed. Eng., vol. 29, pp. 1388–1411, 2013.
[123] E. F. Toro, “The Equations of Fluid Dynamics,” Riemann Solvers Numer. Methods Fluid Dyn., no. 1, pp. 1–40, 2009.
[124] R. Eymard, T. Gallouet, and R. Herbin, “Finite Volume Methods,” vol. M, no. January, 2006.
[125] R. J. LeVeque, “Finite Volume Methods for Hyperbolic Problems,” Cambridge Univ. Press, vol. 54, p. 258, 2002.
[126] J. N. Reddy, An Introduction to Nonlinear Finite Element Analysis: with applications to heat transfer, fluid mechanics, and solid mechanics. Oxford,G.B.: Oxford University Press, 2015.
[127] D. L. Logan, A First Course In The Finite Element Method. 2012.
[128] O. C. Zienkiewicz, R. L. Taylor, and J. Z. Zhu, The Finite Element Method: Its Basis and Fundamentals, 7th ed. Oxford,G.B.: ButterworthHeinemann, 2013.
[129] F. R. Watanabe S, Blanco P, “Mathematical model of blood flow in an anatomically detailed arterial network of the arm.,” ESAIM Math. Model. Numer. Anal., vol. 47, pp. 961–985, 2013.
[130] D. J. Brown, “Brown  Input Impedance and Reflection Coefficient in FractalLike Models of Asymmetrically Branching Compliant Tubes.PDF,” vol. 43, no. 7, 1996.
[131] Y. Huo and G. S. Kassab, “A hybrid onedimensional/Womersley model of pulsatile blood flow in the entire coronary arterial tree,” AJP Hear. Circ. Physiol., vol. 292, no. 6, pp. H2623–H2633, 2007.
[132] D. Bessems, C. G. Giannopapa, M. C. M. Rutten, and F. N. van de Vosse, “Experimental validation of a timedomainbased wave propagation model of blood flow in viscoelastic vessels,” J. Biomech., vol. 41, no. 2, pp. 284–291, 2008.
[133] A. Noordergraaf, P. D. Verdouw, and H. B. K. Boom, “The use of an analog computer in a circulation model,” Prog. Cardiovasc. Dis., vol. 5, no. 5, pp. 419–439, 1963.
[134] M. Matsumori, H. Tanaka, Y. Kawanishi, T. Onishi, K. Nakagiri, T. Yamashita, K. Okada, and Y. Okita, “Comparison of distensibility of the aortic root and cusp motion after aortic root replacement with two reimplantation techniques: Valsalva graft versus tube graft☆,” Interact. Cardiovasc. Thorac. Surg., vol. 6, no. 2, pp. 177–181, 2007.
[135] I. E. Vignon and C. A. Taylor, “Outflow boundary conditions for onedimensional finite element modeling of blood flow and pressure waves in arteries,” Wave Motion, vol. 39, no. 4, pp. 361–374, 2004.
[136] B. Steele, M. Olufsen, and C. Taylor, “Fractal Network model for simulating abdominal and lower extremity blood flow during resting and exercise conditions,” Comput. Methods Biomech. Biomed. Engin., vol. 10, pp. 39–51, 2007.
[137] R. Spilker, J. Feinstein, D. W Parker, V. Reddy, and C. Taylor, “MorphometryBased Impedance Boundary Conditions for PatientSpecific Modeling of Blood Flow in Pulmonary Arteries,” Ann. Biomed. Eng., vol. 35, pp. 546–559, 2007.
[138] L. Grinberg and G. E. Karniadakis, “Outflow boundary conditions for arterial networks with multiple outlets,” Ann. Biomed. Eng., vol. 36, no. 9, pp. 1496–1514, 2008.
[139] N. Westerhof, J.W. Lankhaar, B.E. Westerhof, “The arterial Windkessel.” Medical & biological engineering & computing, 47(2), pp.131141.

View 
Download  Article ID: 22132 
