The Influence of RTK GNSS Antenna Heights on Multipath Error

  • Authors

    • Sarah Isnan
    • A. Hardy
    • Wan Baderul Hisan
    • Mohamad Abu Ubaidah Amir
    • Mohd Norsyarizad Razali
    • M.N Azzeri
    • Mohd Arif Ahmad
    • Zulkifly M. R
    • Afiqah Rosly
    • Ainul Rahman
    • Adenen Aziz
    • Siti Nur Muhamad
    2018-11-26
    https://doi.org/10.14419/ijet.v7i4.29.21966
  • Antenna Heights, Global Navigation Satellite System, Hydrography, Multipath Error, Real Time Kinematic (RTK
  • Hydrographic surveying is critical to provide safe navigation and route selection to the vessels. Since GNSS has evolved throughout the decade, it became a fundamental equipment for survey. Real Time Kinematic (RTK) GNSS is one of the GNSS technology, which capable in computing position in real time and produce centimetre accuracy. However, this GNSS equipment is susceptible to multipath error causing error in positioning computation. This project attempts to investigate how different antenna heights will effect the positioning accuracy and size of multipath error on RTK GNSS. Various types of analysis have been done in order to determine whether different antenna heights will affect the positional accuracy and size of multipath error. The result shows that different antenna heights effect the positional accuracy and size of the multipath error and this will provide basic guides in order to carry out hydrographic survey. Conclusion and future research also has been made in order to guide researchers in conducting future projects.

  • References

    1. [1] Kaplan, E. and Hegarty, C. (2006). Understanding GPS. 2nd ed. Boston: Artech House, pp.279-295.

      [2] Mekik, C. and Can, O. (2010). An investigation on multipath errors in real time kinematic GPS method. Scientific Research and Essays, 5(16), pp.2186-2200.

      [3] Even-Tzur, G. and Shaked, D. (2008). GPS Antenna Height and Its Influence on Pseudorange Multipath. In: International Federation of Surveyors (FIG) Working Week. Stockholm: International Federation of Surveyors, p.112.

      [4] Coz, D., Shallberg, K. and Manz, A. (1999). Definition and Analysis of WAAS Receiver Multipath Error Envelopes. Navigation, 46(4), pp.271-282.

      [5] Pirti, A. (2015). Multipath and multipath reduction in the obstructed areas by using enhanced strobe correlator (ESC) technique. Tehnicki vjesnik , 22(2), pp.509-519.

      [6] Noor Suryati, M.A. & Musa, T.A. (2008). Site-specific Multipath Characteristic of GPS ISKANDAR Network. , pp.1–13. Available at: http://www.utm.my/gng/files/2014/09/12.pdf.

      [7] Ge, L., Han, S. and Rizos, C. (2002). GPS Multipath Change Detection In Permanent GPS Stations. Survey Review, 36(283), pp.306-322.

      [8] Roy, A. (1993). Glasgow and the heavens. Vistas in Astronomy, 36, pp.389-407.

      [9] EL-Hattab, A. (2013). Influence of GPS antenna phase center variation on precise positioning. National Research Institute of Astronomy and Geophysics : Journal of Astronomy and Geophysics, 2(2), pp.272-277.

      [10] Sanz Subirana, J., Juan Zornoza, J., and Hernández-Pajares, M. (2011). Antenna Phase Centre - Navipedia. [online] European Space Agency Navipedia. Available at: http://www.navipedia.net/index.php/Antenna_Phase_Centre [Accessed 2 Aug. 2016].

      [11] Takasu, T. (2013). RTKLIB ver. 2.4.2 Manual. [online] RTKLIB. Available at: http://www.rtklib.com/prog/manual_2.4.2.pdf [Accessed 2 Aug. 2016].

      [12] Tusat, E. and Turgut, B. (2004). Investigation Ambiguity Resolution in GPS and the Effects of Ionospheric Modeling on Base Vector Components. In: Fédération Internationale des Géomètres. Turkey: Fédération Internationale des Géomètres, pp.1-1

  • Downloads

  • How to Cite

    Isnan, S., Hardy, A., Hisan, W. B., Amir, M. A. U., Razali, M. N., Azzeri, M., Ahmad, M. A., R, Z. M., Rosly, A., Rahman, A., Aziz, A., & Muhamad, S. N. (2018). The Influence of RTK GNSS Antenna Heights on Multipath Error. International Journal of Engineering & Technology, 7(4.29), 178-181. https://doi.org/10.14419/ijet.v7i4.29.21966