Enhancement of Energy Properties of Leucaena Leucocephala Pellets via Torrefaction and its Non-Isothermal Decomposition Kinetics

  • Authors

    • S. Matali
    • N. A. Rahman
    • S. S. Idris
    • N. Yaacob
    2018-11-27
    https://doi.org/10.14419/ijet.v7i4.18.21940
  • Energy properties, kinetic analysis, Leucaena Leucocephala, pellet hardness, torrefaction
  • The quality of raw woody biomass as biofuels can be greatly improved by applying a suitable pre-treatment either by thermochemical or biochemical conversions. The aim of this work is to investigate the impact of torrefaction parameters i.e. torrefaction temperature and holding time, on short-rotation energy crop pellet, Leucaena Leucocephala (LL) under inert atmosphere. Torrefaction temperature range under study was set between 200 to 300oC with holding times of 30 and 60 minutes. Torrefied biomass pellet was compared to its raw pellet form in terms of mass-energy properties, hardness quality, and their respective kinetic parameters via Kissinger’s method. Results of the study revealed that temperature has a more significant impact on mass-energy index with holding times influence becoming more apparent at higher torrefaction temperature above 250oC. Energy properties were improved significantly in terms of calorific value and energy density.  Increasing the torrefaction parameters also resulted in the decrease of pellet’s hardness due to increase in brittleness. Under pyrolysis conditions, the activation energy of raw LL was lower at 186 kJ/mol than torrefied samples (200- 272 kJ/mol). The understanding of the torrefied biomass properties and its weight loss kinetics will give better prediction of product quality by varying torrefaction conditions.

     

     

  • References

    1. [1] M. Rudolfsson, E. Borén, L. Pommer, A. Nordin, and T. A. Lestander, “Combined effects of torrefaction and pelletization parameters on the quality of pellets produced from torrefied biomass,†Appl. Energy, vol. 140, pp. 378–374, 2017.

      [2] V. Dhyani and T. Bhaskar, “A comprehensive review on the pyrolysis of lignocellulosic biomass,†Renew. Energy, 2017.

      [3] D. Thrän, J. Witt, K. Schaubach, J. Kiel, M. Carbo, J. Maier, C. Ndibe, J. Koppejan, E. Alakangas, S. Majer, and F. Schipfer, “Moving torrefaction towards market introduction – Technical improvements and economic-environmental assessment along the overall torrefaction supply chain through the SECTOR project,†Biomass and Bioenergy, vol. 89, pp. 184–200, 2016.

      [4] M. A. Sukiran, F. Abnisa, W. M. A. Wan Daud, N. Abu Bakar, and S. K. Loh, “A review of torrefaction of oil palm solid wastes for biofuel production,†Energy Convers. Manag., vol. 149, pp. 101–120, 2017.

      [5] Quang-Vu Bach and Øyvind Skreiberg, “Upgrading biomass fuels via wet torrefaction : A review and comparison with dry torrefaction,†Renew. Sustain. Energy Rev., vol. 54, pp. 665–677, 2016.

      [6] W.-H. Chen, J. Peng, and X. T. Bi, “A state-of-the-art review of biomass torrefaction, densification and applications,†Renew. Sustain. Energy Rev., vol. 44, pp. 847–866, Apr. 2015.

      [7] W. H. Chen and P. C. Kuo, “A study on torrefaction of various biomass materials and its impact on lignocellulosic structure simulated by a thermogravimetry,†Energy, vol. 35, no. 6, pp. 2580–2586, 2010.

      [8] N. El Bassam, Bioenergy crops : a development guide and species reference, 1st ed. Earthscan Ltd, 2010.

      [9] N. El Bassam, Handbook of Bioenergy Crops: A Complete Reference to Species, Development and Applications, 1st ed., vol. 18, no. 1. Earthscan, 2010.

      [10] S. N. Koffa, “Potential use of problem soils for energy plantations in the Philippines,†Bioresour. Technol., vol. 36, no. 2, pp. 101–111, 1991.

      [11] P. K. Adapa, L. G. Tabil, and G. J. Schoenau, “Factors affecting the quality of biomass pellet for biofuel and energy analysis of pelleting process,†Int. J. Agric. Biol. Eng., vol. 6, no. 2, pp. 1–12, 2013.

      [12] N. Kaliyan and R. Vance Morey, “Densification characteristics of corn stover and switchgrass,†Trans. ASABE, vol. 52, no. 3, pp. 907–920, 2009.

      [13] S. Matali, N. A. Rahman, S. S. Idris, N. Yaacob, and A. B. Alias, “Lignocellulosic Biomass Solid Fuel Properties Enhancement via Torrefaction,†in Procedia Engineering, 2016, vol. 148, pp. 671–678.

      [14] V. Benavente and A. Fullana, “Torrefaction of olive mill waste,†Biomass and Bioenergy, vol. 73, pp. 186–194, 2015.

      [15] N. Kaliyan and R. Vance Morey, “Factors affecting strength and durability of densified biomass products,†Biomass and Bioenergy, vol. 33, no. 3, pp. 337–359, Mar. 2009.

      [16] J. Peng, J. Wang, X. T. Bi, C. J. Lim, S. Sokhansanj, H. Peng, and D. Jia, “Effects of thermal treatment on energy density and hardness of torrefied wood pellets,†Fuel Process. Technol., vol. 129, pp. 168–173, Jan. 2015.

      [17] M. Heydari, M. Rahman, and R. Gupta, “Kinetic study and thermal decomposition behavior of lignite coal,†Int. J. Chem. Eng., vol. 2015, 2015.

      [18] H. E. Kissinger, “Reaction Kinetics in Differential Themal Analysis,†Anal. Chem., vol. 29, no. 11, pp. 1702–1706, 1957.

      [19] J. Kihedu, “Torrefaction and Combustion of Ligno-Cellulosic Biomass,†Energy Procedia, vol. 75, pp. 162–167, 2015.

      [20] N. Cellatoğlu and M. İlkan, “Torrefaction of Solid Olive Mill Residue,†BioResources, vol. 10, pp. 5876–5889, 2015.

      [21] P. C. A. Bergman, A. . Boersma, R. W. . Zwart, and J. H. A. Kiel, “Torrefaction for biomass co-firing in existing coal-fired power stations (ECN-C-05-013),†2005.

      [22] M. J. Prins, K. J. Ptasinski, and F. J. J. G. Janssen, “Torrefaction of wood Part 2. Analysis of products,†J. Anal. Appl. Pyrolysis, vol. 77, no. 1, pp. 35–40, Aug. 2006.

      [23] A. Pimchuai, A. Dutta, and P. Basu, “Torrefaction of Agriculture Residue To Enhance Combustible Properties †,†Energy & Fuels, vol. 24, no. 9, pp. 4638–4645, 2010.

      [24] K. Anupam, A. K. Sharma, P. S. Lal, S. Dutta, and S. Maity, “Preparation, characterization and optimization for upgrading Leucaena leucocephala bark to biochar fuel with high energy yielding,†Energy, vol. 106, pp. 743–756, 2016.

      [25] M. Phanphanich and S. Mani, “Impact of torrefaction on the grindability and fuel characteristics of forest biomass.,†Bioresour. Technol., vol. 102, no. 2, pp. 1246–53, Jan. 2011.

      [26] G. Toscano, A. Pizzi, E. Foppa Pedretti, G. Rossini, G. Ciceri, G. Martignon, and D. Duca, “Torrefaction of tomato industry residues,†Fuel, vol. 143, pp. 89–97, Mar. 2015.

      [27] D. Medic, M. Darr, A. Shah, B. Potter, and J. Zimmerman, “Effects of torrefaction process parameters on biomass feedstock upgrading,†Fuel, vol. 91, no. 1, pp. 147–154, Jan. 2012.

      [28] L. Cao, X. Yuan, H. Li, C. Li, Z. Xiao, L. Jiang, B. Huang, Z. Xiao, X. Chen, H. Wang, and G. Zeng, “Complementary effects of torrefaction and co-pelletization: Energy consumption and characteristics of pellets,†Bioresour. Technol., vol. 185, pp. 254–262, Jun. 2015.

      [29] F. Abnisa, A. Arami-Niya, W. M. A. Wan Daud, J. N. Sahu, and I. M. Noor, “Utilization of oil palm tree residues to produce bio-oil and bio-char via pyrolysis,†Energy Convers. Manag., vol. 76, pp. 1073–1082, Dec. 2013.

      [30] J.-J. Lu and W.-H. Chen, “Product Yields and Characteristics of Corncob Waste under Various Torrefaction Atmospheres,†Energies, vol. 7, no. 1, pp. 13–27, Dec. 2013.

      [31] F. Yao, Q. Wu, Y. Lei, W. Guo, and Y. Xu, “Thermal decomposition kinetics of natural fibers: Activation energy with dynamic thermogravimetric analysis,†Polym. Degrad. Stab., vol. 93, pp. 90–98, 2008.

      [32] M. A. Lopez-velazquez, V. Santes, J. Balmaseda, and E. Torres-garcia, “Pyrolysis of orange waste : A thermo-kinetic study,†J. Anal. Appl. Pyrolysis, vol. 99, pp. 170–177, 2013.

  • Downloads

  • How to Cite

    Matali, S., A. Rahman, N., S. Idris, S., & Yaacob, N. (2018). Enhancement of Energy Properties of Leucaena Leucocephala Pellets via Torrefaction and its Non-Isothermal Decomposition Kinetics. International Journal of Engineering & Technology, 7(4.18), 306-310. https://doi.org/10.14419/ijet.v7i4.18.21940