Fabrication of Nickel Oxide Nanowall Network Films at Different Annealing Temperatures for Humidity Sensing Applications

  • Authors

    • M. H. Mamat
    • N. Parimon
    • M. A.R. Abdullah
    • A. S. Ismail
    • M. F.. Malek
    • W. R.W. Ahmad
    • A. S. Zoolfakar
    • A. B. Suriani
    • M. K. Ahmad
    • N. Nayan
    • I. B. Shameem Banu
    • R. Amiruddin
    • M. Rusop
    2018-11-27
    https://doi.org/10.14419/ijet.v7i4.18.21934
  • nickel oxide, nanowall network film, structural properties, optical properties, humidity sensing.
  • Nickel oxide (NiO) nanowall network films were successfully prepared on indium tin oxide (ITO) glass substrates by sonicated sol-gel immersion method using a precursor solution of nickel nitrate hexahydrate. The NiO nanowall network films were annealed at different annealing temperature that ranges from 300 â°C to 500 â°C. The effects of annealing temperature on the structural, optical and humidity sensing properties of NiO nanowall network films were investigated by X-ray diffraction (XRD), field emission scanning electron microscopy (SEM), ultraviolet-visible (UV-vis) spectroscopy and humidity sensor measurement system. The X-ray diffraction patterns revealed that the grown NiO nanowall network films have a crystalline cubic structure. The UV-vis spectra demonstrates that the average transmittance value of all samples in the visible region are high and exceeded 90% transmission. The optical bandgap energy of NiO nanowall network films ranged from 3.76 to 3.77 eV. Results obtained showed that the humidity sensing performance of NiO nanowall network films are very promising and could be tuned by annealing temperatures.

     

     

  • References

    1. [1] M. Gong, Y. Li, Y. Guo, X. Lv, X. Dou (2018), 2D TiO2 nanosheets for ultrasensitive humidity sensing application benefited by abundant surface oxygen vacancy defects, Sensors and Actuators B: Chemical 262, 350-358.

      [2] W. Dong, Z. Ma, Q. Duan (2018), Preparation of stable crosslinked polyelectrolyte and the application for humidity sensing, Sensors and Actuators B: Chemical 272, 14-20.

      [3] N.D.M. Sin, N. Samsudin, S. Ahmad, M.H. Mamat, M. Rusop (2013), Zn-Doped SnO2 with 3D Cubic Structure for Humidity Sensor, Procedia Engineering 56(0), 801-806.

      [4] X. Ding, X. Chen, X. Chen, X. Zhao, N. Li (2018), A QCM humidity sensor based on fullerene/graphene oxide nanocomposites with high quality factor, Sensors and Actuators B: Chemical 266, 534-542.

      [5] X. Leng, D. Luo, Z. Xu, F. Wang (2018), Modified graphene oxide/Nafion composite humidity sensor and its linear response to the relative humidity, Sensors and Actuators B: Chemical 257, 372-381.

      [6] A.S. Ismail, M.H. Mamat, M.F. Malek, M.M. Yusoff, R. Mohamed, N.D.M. Sin, A.B. Suriani, M. Rusop (2018), Heterogeneous SnO2/ZnO nanoparticulate film: Facile synthesis and humidity sensing capability, Materials Science in Semiconductor Processing 81, 127-138.

      [7] Y. Pang, J. Jian, T. Tu, Z. Yang, J. Ling, Y. Li, X. Wang, Y. Qiao, H. Tian, Y. Yang, T.-L. Ren (2018), Wearable humidity sensor based on porous graphene network for respiration monitoring, Biosensors and Bioelectronics 116, 123-129.

      [8] M.H. Mamat, N.N. Hafizah, M. Rusop (2013), Fabrication of thin, dense and small-diameter zinc oxide nanorod array-based ultraviolet photoconductive sensors with high sensitivity by catalyst-free radio frequency magnetron sputtering, Materials Letters 93(0), 215-218.

      [9] Y. Kumar, A. Sharma, Parasharam M. Shirage (2017), Shape-controlled CoFe2O4 nanoparticles as an excellent material for humidity sensing, RSC Advances 7(88), 55778-55785.

      [10] S. Ismail, M.H. Mamat, N.D. Md. Sin, M.F. Malek, A.S. Zoolfakar, A.B. Suriani, A. Mohamed, M.K. Ahmad, M. Rusop (2016), Fabrication of hierarchical Sn-doped ZnO nanorod arrays through sonicated sol−gel immersion for room temperature, resistive-type humidity sensor applications, Ceramics International 42(8), 9785-9795.

      [11] D. Zhang, D. Wang, X. Zong, G. Dong, Y. Zhang (2018), High-performance QCM humidity sensor based on graphene oxide/tin oxide/polyaniline ternary nanocomposite prepared by in-situ oxidative polymerization method, Sensors and Actuators B: Chemical 262, 531-541.

      1. Gil, M. Fernández, I. Mendizábal, S.A. Korili, J. Soto-Armañanzas, A. Crespo-Durante, C. Gómez-Polo (2016), Fabrication of TiO2 coated metallic wires by the sol–gel technique as a humidity sensor, Ceramics International 42(7), 9292-9298.

      [12] L. John Kennedy, P. Magesan, J. Judith Vijaya, M.J. Umapathy, U. Aruldoss (2014), Biominerals doped nanocrystalline nickel oxide as efficient humidity sensor: A green approach, Materials Science and Engineering: B 190, 13-20.

      [13] M. Patel, H.-S. Kim, J. Kim, J.-H. Yun, S.J. Kim, E.H. Choi, H.-H. Park (2017), Excitonic metal oxide heterojunction (NiO/ZnO) solar cells for all-transparent module integration, Solar Energy Materials and Solar Cells 170, 246-253.

      [14] R. Rajendran, Z. Yaakob, M.A. Mat Teridi, M.S. Abd Rahaman, K. Sopian (2014), Preparation of nanostructured p-NiO/n-Fe2O3 heterojunction and study of their enhanced photoelectrochemical water splitting performance, Materials Letters 133, 123-126.

      [15] E. Turgut, Ö. Çoban, S. Sarıtaş, S. Tüzemen, M. Yıldırım, E. Gür (2018), Oxygen partial pressure effects on the RF sputtered p-type NiO hydrogen gas sensors, Applied Surface Science 435, 880-885.

      [16] A.A. Ahmed, M. Devarajan, N. Afzal (2017), Effects of substrate temperature on the degradation of RF sputtered NiO properties, Materials Science in Semiconductor Processing 63, 137-141.

      [17] M. Predanocy, I. Hotový, M. ÄŒaploviÄová (2017), Structural, optical and electrical properties of sputtered NiO thin films for gas detection, Applied Surface Science 395, 208-213.

      [18] M. Ali, N. Remalli, V. Gedela, B. Padya, P.K. Jain, A. Al-Fatesh, U.A. Rana, V.V.S.S. Srikanth (2017), Ni nanoparticles prepared by simple chemical method for the synthesis of Ni/NiO-multi-layered graphene by chemical vapor deposition, Solid State Sciences 64, 34-40.

      [19] N. Kaur, D. Zappa, M. Ferroni, N. Poli, M. Campanini, R. Negrea, E. Comini (2018), Branch-like NiO/ZnO heterostructures for VOC sensing, Sensors and Actuators B: Chemical 262, 477-485.

      [20] D.R. Sahu, T.-J. Wu, S.-C. Wang, J.-L. Huang (2017), Electrochromic behavior of NiO film prepared by e-beam evaporation, Journal of Science: Advanced Materials and Devices 2(2), 225-232.

      [21] S. Zhao, Y. Shen, P. Zhou, J. Zhang, W. Zhang, X. Chen, D. Wei, P. Fang, Y. Shen (2018), Highly selective NO2 sensor based on p-type nanocrystalline NiO thin films prepared by sol–gel dip coating, Ceramics International 44(1), 753-759.

      [22] M.N. Siddique, A. Ahmed, P. Tripathi (2018), Electric transport and enhanced dielectric permittivity in pure and Al doped NiO nanostructures, Journal of Alloys and Compounds 735, 516-529.

      [23] L.T. Hoa, H.N. Tien, S.H. Hur (2014), A highly sensitive UV sensor composed of 2D NiO nanosheets and 1D ZnO nanorods fabricated by a hydrothermal process, Sensors and Actuators A: Physical 207(0), 20-24.

      [24] R. Lontio Fomekong, H.M. Tedjieukeng Kamta, J. Ngolui Lambi, D. Lahem, P. Eloy, M. Debliquy, A. Delcorte (2018), A sub-ppm level formaldehyde gas sensor based on Zn-doped NiO prepared by a co-precipitation route, Journal of Alloys and Compounds 731, 1188-1196.

      [25] J. Song, L. Xu, R. Xing, W. Qin, Q. Dai, H. Song (2013), Ag nanoparticles coated NiO nanowires hierarchical nanocomposites electrode for nonenzymatic glucose biosensing, Sensors and Actuators B: Chemical 182, 675-681.

      [26] M. H. Mamat, M.F. Malek, N.N. Hafizah, Z. Khusaimi, M.Z. Musa, M. Rusop (2014), Fabrication of an ultraviolet photoconductive sensor using novel nanostructured, nanohole-enhanced, aligned aluminium-doped zinc oxide nanorod arrays at low immersion times, Sensors and Actuators B: Chemical 195(0), 609-622.

      [27] M.H. Mamat, M.I. Che Khalin, N.N.H. Nik Mohammad, Z. Khusaimi, N.D. Md Sin, S.S. Shariffudin, M. Mohamed Zahidi, M.R. Mahmood (2012), Effects of Annealing Environments on the Solution-Grown, Aligned Aluminium-Doped Zinc Oxide Nanorod-Array-Based Ultraviolet Photoconductive Sensor, Journal of Nanomaterials 2012, 189279.

      [28] Y. Akaltun, T. Çayır (2015), Fabrication and characterization of NiO thin films prepared by SILAR method, Journal of Alloys and Compounds 625, 144-148.

      [29] A.A. Akl, S.A. Mahmoud (2018), Effect of growth temperatures on the surface morphology, optical analysis, dielectric constants, electric susceptibility, Urbach and bandgap energy of sprayed NiO thin films, Optik 172, 783-793.

      [30] B.P. Dhonge, S.S. Ray, B. Mwakikunga (2017), Electronic to protonic conduction switching in Cu2O nanostructured porous films: the effect of humidity exposure, RSC Advances 7(35), 21703-21712.

      [31] S. Park, D. Lee, B. Kwak, H.-S. Lee, S. Lee, B. Yoo (2018), Synthesis of self-bridged ZnO nanowires and their humidity sensing properties, Sensors and Actuators B: Chemical 268, 293-298.

      1. Sharma, Y. Kumar, K. Mazumder, A.K. Rana, P.M. Shirage (2018), Controlled Zn1−xNixO nanostructures for an excellent humidity sensor and a plausible sensing mechanism, New Journal of Chemistry 42(11), 8445-8457.
  • Downloads

  • How to Cite

    H. Mamat, M., Parimon, N., A.R. Abdullah, M., S. Ismail, A., F.. Malek, M., R.W. Ahmad, W., S. Zoolfakar, A., B. Suriani, A., K. Ahmad, M., Nayan, N., B. Shameem Banu, I., Amiruddin, R., & Rusop, M. (2018). Fabrication of Nickel Oxide Nanowall Network Films at Different Annealing Temperatures for Humidity Sensing Applications. International Journal of Engineering & Technology, 7(4.18), 277-282. https://doi.org/10.14419/ijet.v7i4.18.21934