Atomistic Simulations of Twist Grain Boundary Structures in Aluminum-Magnesium Alloys

  • Authors

    • Siti Sarah Kamaludin
    • Prakash Thamburaja
    • Ahmad Kamal Ariffin
    https://doi.org/10.14419/ijet.v7i3.17.21892
  • The structures and energy of grain boundaries (GBs) have a significant influence on the mechanical properties of polycrystalline material. Most metal exists in the polycrystalline form but most of the metal applications are in term of their alloys. In this paper, twist GBs in magnesium (Mg)-aluminum (Al) were simulated using atomic simulation to understand the structure and properties of GBs in alloy. The energy of 45 twists GBs were calculated and plotted. The results indicate that the GB energy of a low-range misorientation angle agrees with the Read-Shockley equation for dislocation model. In high angle GB, special behaviour correspond to low ∑ values are observed.

  • References

    1. [1] E. A. Holm, G. S. Rohrer, S. M. Foiles, A. D. Rollett, H. M. Miller, and D. L. Olmsted, “Validating computed grain boundary energies in fcc metals using the grain boundary character distribution,†Acta Mater.,(59), 5250–5256 (2011).

      [2] E. A. Holm, D. L. Olmsted, and S. M. Foiles, “Comparing grain boundary energies in face-centered cubic metals: Al, Au, Cu and Ni,†Scr. Mater.,(63),(9), 905–908 (2010).

      [3] M. A. Tschopp, S. P. Coleman, and D. L. Mcdowell, “Symmetric and asymmetric tilt grain boundary structure and energy in Cu and Al ( and transferability to other fcc metals ),†Integr. Mater. Manuf. Innov., 1–14 (2015).

      [4] J. G. Brons and G. B. Thompson, “A comparison of grain boundary evolution during grain growth in fcc metals,†Acta Mater., (61),(11), 3936–3944, (2013).

      [5] K. G. F. Janssens, D. L. Olmsted, E. Holm, S. M. Foiles, S. J. Plimpton, and P. M. Derlet, “Computing the mobility of grain boundaries.,†Nat. Mater., (5), 124 (2006).

      [6] P. Thamburaja and M. Jamshidian, “A multiscale Taylor model-based constitutive theory describing grain growth in polycrystalline cubic metals,†J. Mech. Phys. Solids, (63), 1–28 (2014).

      [7] F. Ulomek and V. Mohles, “Molecular dynamics simulations of grain boundary mobility in Al, Cu and γ -Fe using a symmetrical driving force,†Model. Simul. Mater. Sci. Eng., (22), 55011 (2014).

      [8] H. Zhang, M. I. Mendelev, and D. J. Srolovitz, “Computer simulation of the elastically driven migration of a flat grain boundary,†Acta Mater., (52), 2569–2576 (2004).

      [9] L. Zhang, C. Lu, and K. Tieu, “Atomistic Simulation of Tensile Deformation Behavior of 5 Tilt Grain Boundaries in Copper Bicrystal,†Sci. Rep., (4), 1–9 (2014).

      [10] T. Mungole, P. Kumar, M. Kawasaki, and T. G. Langdon, “The contribution of grain boundary sliding in tensile deformation of an ultrafine-grained aluminum alloy having high strength and high ductility,†J. Mater. Sci., (50), 3549–3561 (2015).

      [11] C. Brandl, T. C. Germann, A. G. Perez-Bergquist, and E. K. Cerreta, “Grain Boundary Motion under Dynamic Loading: Mechanism and Large-Scale Molecular Dynamics Simulations,†Mater. Res. Lett., (1), 220–227, (2013).

      [12] X.-Y. Liu and J. B. Adams, “Grain-boundary segregation in Al–10%Mg alloys at hot working temperatures,†Acta Mater., (46), 3467–3476 (1998).

      [13] S. Plimpton, “Fast Parallel Algorithms for Short-Range Molecular Dynamics,†Journal of Computational Physics, (117), 1–19 (1995).

      [14] C. A. Becker, F. Tavazza, Z. T. Trautt, and R. A. Buarque De Macedo, “Considerations for choosing and using force fields and interatomic potentials in materials science and engineering,†Curr. Opin. Solid State Mater. Sci., (17), 277–283 (2013).

      [15] M. I. Mendelev, M. Asta, M. J. Rahman, and J. J. Hoyt, “Development of interatomic potentials appropriate for simulation of solid–liquid interface properties in Al–Mg alloys,†Philos. Mag., (89), 3269–3285 (2009).

      [16] J. B. Yang, Y. Nagai, M. Hasegawa, and Y. N. Osetsky, “Atomic scale modeling of {110} twist grain boundaries in -iron: Structure and energy properties,†Philos. Mag., (90), 991–1000 (2010).

      [17] Y. Feng, J. Shang, Z. Liu, and G. Lu, “The energy and structure of ( 1 1 0 ) twist grain boundary in tungsten,†Appl. Surf. Sci., (357), 262–267 (2015).

      [18] W. T. Read and W. Shockley, “Dislocation Models of Crystal Grain Boundaries,†Phys. Rev., vol. (78), 275–289 (1950).

      [19] A. Stukowski, “Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool,†Model. Simul. Mater. Sci. Eng., (18) 15012 (2010).

  • Downloads

  • How to Cite

    Kamaludin, S. S., Thamburaja, P., & Ariffin, A. K. (2018). Atomistic Simulations of Twist Grain Boundary Structures in Aluminum-Magnesium Alloys. International Journal of Engineering & Technology, 7(3.17), 180-182. https://doi.org/10.14419/ijet.v7i3.17.21892