Design and fabrication of a dual band 1.8/2.5 GHZ antenna for RF energy harvester

  • Abstract
  • Keywords
  • References
  • PDF
  • Abstract

    This paper proposes a patch antenna that integrated with the RF energy harvester system. The research goal is to propose a slotted and shorted pin patch antenna, which offers a promising solution for efficient dual band RF receiver. A high gain and directivity parameter is desired to reach the goal as it defines the strength of an antenna in capturing more energy and to maximize the transferred power towards the harvesting system. The fabricated antenna on RT/Duroid 5880 is measured to evaluate the simulated results by CST-MWS. The measure-ment is carried in an anechoic chamber. The measured dual antenna gain is 2.29 dBi and 5.51 dBi at 1.8 GHz and 2.5 GHz band, respective-ly. The gain obtained by the proposed antenna is higher compared to the previous patch antenna designs in the frequency range of 1 to 3 GHz, with reasonable matching parameter. The antenna meets the acceptable specifications in the bandwidth range of 0.1 to 2.45 GHz, ex-hibit top omnidirectional pattern, the VSWR < 2 and the directivity > 7 dBi across the dual band. Thus, the proposed antenna is good enough to be adopted with the RF energy harvester.

  • References

      [1] Agrawal, P. (2016). Effect of matching network on ambient RF energy harvesting circuit for wireless sensor networks. Futuristic Trends in Engineering, Science, Humanities, and Technology FTESHT-16, 11.

      [2] Yunus, N. H. M., Sampe, J., Yunas, J., & Pawi, A. (2017). MEMS based RF energy harvester for battery-less remote control: A review. American Journal of Applied Sciences, 14(2), 316-324.

      [3] Sampe, J., Semsudin, N. A. A., Zulkifli, F. F., & Majlis, B. Y. (2017). Micro Hybrid Energy Harvester Circuit for Biomedical Application”, Jurnal Kejuruteraan, 29(1), 41-48.

      [4] Yunus, N. H. M., Sampe, J., Yunas, J., & Pawi, A. (2017, August). Parameter design of microstrip patch antenna operating at dual microwave-band for RF energy harvester application, In 2017 IEEE Regional Symposium on Micro and Nanoelectronics, RSM 2017, 92-95.

      [5] Sampe, J., Yunus, N. H. M., Yunas, J., & Pawi, A. (2017). Ultra-low power RF energy harvesting of 1.9 GHz & 2.45 GHz narrow-band rectenna for battery-less remote control. International Journal of Information and Electronics Engineering, 7(3), 118-122.

      [6] Raval, F., Kosta, Y. P., & Joshi, H. (2015). Reduced size patch antenna using complementary split ring resonator as defected ground plane. AEU-International Journal of Electronics and Communications, 69(8), 1126-1133.

      [7] Sidhu, S. K., & Sivia, J. S. (2016). Analysis and design Rectangular patch with half Rectangular Fractal Techniques. Procedia Computer Science, 85, 386-392.

      [8] R.Siri Chandana, P.Sai Deepthi, D.SriramTeja, N.Veera JayaKrishna, M.Sujatha. (2018). Design of a Single Band Microstrip Patch Antenna for 5G Applications. International Journal of Engineering & Technology, 7 (2.7), 532-535.

      [9] Yen, J. H., Liu, N. C., Chen, K. H., & Tarng, J. H. (2017, March). A compact planar dual-band filtering antenna. In 2017 IEEE International Conference on Computational Electromagnetics (ICCEM), 367-369.

      [10] Dong, H., Hou, X., Zhang, Q., & Wang, F. (2018, March). Flexible slot-ring antenna for RF wireless energy harvesting. In 2018 International Workshop on Antenna Technology (iWAT), 1-4.

      [11] Shen, S., Chiu, C. Y., & Murch, R. D. (2018). Multiport Pixel Rectenna for Ambient RF Energy Harvesting. IEEE Transactions on Antennas and Propagation, 66(2), 644-656.

      [12] Kunwar, A., Gautam, A. K., & Rambabu, K. (2017). Design of a compact U-shaped slot triple band antenna for WLAN/WiMAX applications. AEU-International Journal of Electronics and Communications, 71, 82-88.

      [13] Yunus, N. H. M., Sampe, J., Yunas, J., & Pawi, A. (15-17 August 2018). Comparative Study of Si Based Micromachined Patch Antenna Operating at 5 GHz for RF Energy Harvester. Proceedings of 2018 IEEE International Conference on Semiconductor Electronics, ICSE2018, Kuala Lumpur.

      [14] K. F. L. and K. M. Luk. (2011). Microstrip Patch Antennas. Imperial College Press: London.

      [15] Waterhouse, R. (2013). Microstrip patch antennas: a designer’s guide. Springer Science & Business Media.

      [16] Aneesh, M., Ansari, J. A., Singh, A., & Sayeed, S. S. (2014). Analysis of microstrip line feed slot loaded patch antenna using artificial neural network. Progress in Electromagnetics Research, 58, 35-46.

      [17] Jetti, C. R., & Nandanavanam, V. R. (2018). Trident-shape strip loaded dual band-notched UWB MIMO antenna for portable device applications. AEU-International Journal of Electronics and Communications, 83, 11-21.

      [18] Chatterjee, A., Mondal, T., Patanvariya, D. G., & Jagannath, R. P. K. (2018). Fractal-based design and fabrication of low-sidelobe antenna array. AEU-International Journal of Electronics and Communications, 83, 549-557.

      [19] Lee, K. F., Yang, S. L. S., Kishk, A. A., & Luk, K. M. (2010). The versatile U-slot patch antenna. IEEE Antennas and Propagation Magazine, 52(1), 71-88.

      [20] Garg, R., Bhartia, P., Bahl, I., Ittipiboon, A. (2001). Microstrip Antenna Design Handbook, Artech House.




Article ID: 21736
DOI: 10.14419/ijet.v7i4.21736

Copyright © 2012-2015 Science Publishing Corporation Inc. All rights reserved.