Wireless body area network revisited

  • Authors

    • Mustafa Sabah Taha
    • Mohd Shafry Mohd Rahim
    • Mohammed Mahdi Hashim
    • Fadil Abass Johi
    https://doi.org/10.14419/ijet.v7i4.21725
  • Rapid growth of wireless body area networks (WBANs) technology allowed the fast and secured acquisition as well as exchange of vast amount of data information in diversified fields. WBANs intend to simplify and improve the speed, accuracy, and reliability of communica-tions from sensors (interior motors) placed on and/or close to the human body, reducing the healthcare cost remarkably. However, the secu-rity of sensitive data transfer using WBANs and subsequent protection from adversaries attack is a major issue. Depending on the types of applications, small and high sensitive sensors having several nodes obtained from invasive/non-invasive micro- and nano- technology can be installed on the human body to capture useful information. Lately, the use of micro-electro-mechanical systems (MEMS) and integrated circuits in wireless communications (WCs) became widespread because of their low-power operation, intelligence, accuracy, and miniaturi-zation. IEEE 802.15.6 and 802.15.4j standards have already been set to specifically regulate the medical networks and WBANs. In this view, present communication provides an all-inclusive overview of the past development, recent progress, challenges and future trends of security technology related to WBANs.

  • References

    1. [1] Milenković, A., Otto, C., & Jovanov, E. (2006). Wireless sensor networks for personal health monitoring: Issues and an implementation. Computer communications, 29(13-14), 2521-2533. https://doi.org/10.1016/j.comcom.2006.02.011.

      [2] Otto, C., Milenkovic, A., Sanders, C., & Jovanov, E. (2006). System architecture of a wireless body area sensor network for ubiquitous health monitoring. Journal of mobile multimedia, 1(4), 307-326.

      [3] History of life expectancy. (n.d.). Retrieved from http://www.worldlifeexpectancy.com/history-of-life-expectancy

      [4] History of life expectancy. (n.d.). Retrieved from http://thesocietypages.org/socimages/2010/03/08/the-graying-of-america

      [5] History of life expectancy. (n.d.). Retrieved from http://thesocietypages.org/socimages/2012/06/15/the-graying-of-america

      [6] History of life expectancy. (n.d.). Retrieved from http://healthcare-economist.com/2006/01/30/trends-in-health-carespending

      [7] Shankar, S. K., & Tomar, A. S. (2016, May). A survey on wireless body area network and electronic-healthcare. In Recent Trends in Electronics, Information & Communication Technology (RTEICT), IEEE International Conference on (pp. 598-603). IEEE.

      [8] Ghatole, S. M., & Dahikar, P. B. (2016). Survey on Wireless Body Area Network for Healthcare Applications. International Journal of Researches in Biosciences, Agriculture and Technology (IJRBAT), 4(3), 14-17.

      [9] Sai Nishita, U., Anusha, K., Ramya SriSai, K., & Mohammed Ali Hussain, D. (2018). Health care monitoring and accident tracking system based on location awareness. International Journal of Engineering & Technology, 7(2.7), 246-248. https://doi.org/10.14419/ijet.v7i2.7.10589.

      [10] Movassaghi, S., Abolhasan, M., Lipman, J., Smith, D., & Jamalipour, A. (2014). Wireless body area networks: A survey. IEEE Communications Surveys & Tutorials, 16(3), 1658-1686. https://doi.org/10.1109/SURV.2013.121313.00064.

      [11] IEEE Standards Association. (2012). IEEE Standard for Local and Metropolitan Area Networks—Part 15.6: Wireless Body Area Networks. IEEE Standard for Information Technology, IEEE, 802(6), 1-271.

      [12] Smith, D., & Hanlen, L. (2012). Wireless body area networks: Towards a wearable intranet. ISCIT Tutorial.

      [13] Zhang, J., Cao, Y., Qiao, M., Ai, L., Sun, K., Mi, Q., & Wang, Q. (2018). Human motion monitoring in sports using wearable graphene-coated fiber sensors. Sensors and Actuators A: Physical, 274, 132-140. https://doi.org/10.1016/j.sna.2018.03.011.

      [14] Behera, G., Panigrahy, S. K., & Turuk, A. K. (2018). A Biometric based Anonymous User Authentication Technique in Wireless Body Area Networks.

      [15] Kwon, H., & Lee, S. (2009, September). Energy-efficient multi-hop transmission in body area networks. In Personal, Indoor and Mobile Radio Communications, 2009 IEEE 20th International Symposium on (pp. 2142-2146). IEEE.

      [16] Kaur, N., Singh, E. B., & Student, A. P. (2017). A Survey on Wireless Body Area Network and Human Machine Control. International Journal of Engineering Science, 11581.

      [17] Mainanwal, V., Gupta, M., & Upadhayay, S. K. (2015, March). A survey on wireless body area network: Security technology and its design methodology issue. In Innovations in information, embedded and communication systems (ICIIECS), 2015 international conference on (pp. 1-5). IEEE.

      [18] Kwak, K. S., Ullah, S., & Ullah, N. (2010, November). An overview of IEEE 802.15.6 standard. In Applied Sciences in Biomedical and Communication Technologies (ISABEL), 2010 3rd International Symposium on (pp. 1-6). IEEE.

      [19] Sharma, S., Tripathi, M. M., & Mishra, V. M. (2017, November). Survey paper on sensors for body area network in health care. In Emerging Trends in Computing and Communication Technologies (ICETCCT), International Conference on (pp. 1-6). IEEE.

      [20] Dishman, E. (2004). Inventing wellness systems for aging in place. Computer, 37(5), 34-41. https://doi.org/10.1109/MC.2004.1297237.

      [21] Barakah, D. M., & Ammad-uddin, M. (2012, February). A survey of challenges and applications of wireless body area network (WBAN) and role of a virtual doctor server in existing architecture. In Intelligent Systems, Modelling and Simulation (ISMS), 2012 Third International Conference on (pp. 214-219). IEEE.

      [22] González-Valenzuela, S., Liang, X., Cao, H., Chen, M., & Leung, V. C. (2012). Body area networks. In Autonomous Sensor Networks (pp. 17-37). Springer, Berlin, Heidelberg. https://doi.org/10.1007/5346_2012_26.

      [23] Khan, R. A., & Pathan, A. S. K. (2018). The state-of-the-art wireless body area sensor networks: A survey. International Journal of Distributed Sensor Networks, 14(4), 1550147718768994. https://doi.org/10.1177/1550147718768994.

      [24] Ullah, S., Khan, P., Ullah, N., Saleem, S., Higgins, H., & Kwak, K. S. (2010). A review of wireless body area networks for medical applications. arXiv preprint arXiv:1001.0831.

      [25] Ullah, S., Higgins, H., Braem, B., Latre, B., Blondia, C., Moerman, I., & Kwak, K. S. (2012). A comprehensive survey of wireless body area networks. Journal of medical systems, 36(3), 1065-1094. https://doi.org/10.1007/s10916-010-9571-3.

      [26] Lewis, D. (2008). 802.15. 6 call for applications in body area networksresponse summary,â€15–08–0407–05-0006.

      [27] History of life expectancy. (n.d.). Retrieved from http://www.chinadaily.com.cn/china/2013-03/21/content 16320337.htm

      [28] Karmakar, N. C., Yang, Y., & Rahim, A. (2018). Wireless Monitoring of Sleep Apnoea Patients. In Microwave Sleep Apnoea Monitoring (pp. 25-39). Springer, Singapore. https://doi.org/10.1007/978-981-10-6901-7_3.

      [29] History of life expectancy. (n.d.). Retrieved from http://www.worlddiabetesfoundation.org/composite-35.htm

      [30] History of life expectancy. (n.d.). Retrieved from http://www.who.int/cardiovascular diseases/resources/atlas.en

      [31] History of life expectancy. (n.d.). Retrieved from http://www.who.int/cardiovascular diseases/resources/atlas.en

      [32] Lipprandt, M., Eichelberg, M., Thronicke, W., Kruger, J., Druke, I., Willemsen, D. & Hein, A. (2009, May). OSAMI-D: An open service platform for healthcare monitoring applications. In Human System Interactions, 2009. HSI'09. Second Conference on (pp. 139-145). IEEE.

      [33] Nehmer, J., Becker, M., Karshmer, A., & Lamm, R. (2006, May). Living assistance systems: an ambient intelligence approach. In Proceedings of the 28th international conference on Software engineering (pp. 43-50). ACM.

      [34] Kwak, K. S., Ullah, S., & Ullah, N. (2010, November). An overview of IEEE 802.15.6 standard. In Applied Sciences in Biomedical and Communication Technologies (ISABEL), 2010 3rd International Symposium on (pp. 1-6). IEEE.

      [35] History of life expectancy. (n.d.). Retrieved from http://www.fcc.gov/oet/rfsafety/sar.html

      [36] Mile, A., Okeyo, G., & Kibe, A. (2018). Hybrid IEEE 802.15. 6 Wireless Body Area Networks Interference Mitigation Model for High Mobility Interference Scenarios. Wireless Engineering and Technology, 9(02), 34. https://doi.org/10.4236/wet.2018.92004.

      [37] Lewis, D. 802.15. 6 call for applications-response summary,†July 2008. IEEE802, 15.

      [38] Smith, D. B., Miniutti, D., Lamahewa, T. A., & Hanlen, L. W. (2013). Propagation models for body-area networks: A survey and new outlook. IEEE Antennas and Propagation Magazine, 55(5), 97-117. https://doi.org/10.1109/MAP.2013.6735479.

      [39] Khan, J. Y., Yuce, M. R., Bulger, G., & Harding, B. (2012). Wireless body area network (WBAN) design techniques and performance evaluation. Journal of medical systems, 36(3), 1441-1457 https://doi.org/10.1007/s10916-010-9605-x.

      [40] Zhen, B., Patel, M., Lee, S., Won, E., & Astrin, A. (2008). Tg6 technical requirements document (TRD) IEEE p802. 15-08-0644-09-0006. Tech. Rep.

      [41] Wang, S., & Park, J. T. (2010). Modeling and analysis of multi-type failures in wireless body area networks with semi-Markov model. IEEE Communications Letters, 14(1). https://doi.org/10.1109/LCOMM.2010.01.091719.

      [42] Elias, E., Chaumon, M. E. B., & Vacher, M. (2018, July). Methods to Design Home Support for Elders. In International Conference on Human Aspects of IT for the Aged Population (pp. 276-289). Springer, Cham. https://doi.org/10.1007/978-3-319-92037-5_21.

      [43] Tachtatzis, C., Di Franco, F., Tracey, D. C., Timmons, N. F., & Morrison, J. (2010, December). An energy analysis of IEEE 802.15. Six scheduled access modes. In GLOBECOM Workshops (GC Wkshps), 2010 IEEE (pp. 1270-1275). IEEE.

      [44] Venkateswarlu, V. T., Naganjaneyulu, P. V., & Rao, D. N. (2017). The Wireless Body Area Sensor Networks and Routing Strategies: Nomenclature and Review of Literature. Global Journal of Computer Science and Technology.

      [45] Meena, U., & Jha, M. K. (2015, March). An efficiency model for authentication approaches in WBAN. In Computing for Sustainable Global Development (INDIACom), 2015 2nd International Conference on (pp. 476-481). IEEE.

      [46] Lewis, D. (2010). IEEE p802. 15.6/d0 draft standard for body area network (Vol. 6). 15-10-0245-06.

      [47] Bishnu, A., & Bhatia, V. (2018). An IEEE 802.22 transceiver framework and its performance analysis on software defined radio for TV white space. Telecommunication Systems, 68(4), 657-668. https://doi.org/10.1007/s11235-017-0417-x.

      [48] Khromov, I. A., & Dvornikov, A. A. (2017, September). The human body as the element of the computer network. In "Quality Management, Transport and Information Security, Information Technologies"(IT&QM&IS), 2017 International Conference (pp. 378-382). IEEE. https://doi.org/10.1109/ITMQIS.2017.8085838.

      [49] Rosini, R., Verdone, R., & D'Errico, R. (2014). Body-to-body indoor channel modeling at 2.45 GHz. IEEE Transactions on Antennas and Propagation, 62(11), 5807-5819. https://doi.org/10.1109/TAP.2014.2352631.

      [50] Elhayatmy, G., Dey, N., & Ashour, A. S. (2018). Internet of things based wireless body area network in healthcare. In Internet of Things and Big Data Analytics toward Next-Generation Intelligence (pp. 3-20). Springer, Cham. https://doi.org/10.1007/978-3-319-60435-0_1.

      [51] Rathour, A. S., & Kumar, R. Performance Analysis of T Slot UWB Patch Antenna for WBAN Applications.

      [52] Domingo, M. C. (2014). Sensor and gateway location optimization in body sensor networks. Wireless networks, 20(8), 2337-2347. https://doi.org/10.1007/s11276-014-0745-7.

      [53] Sindhu, S., Vashisth, S., & Chakarvarti, S. K. (2016). A review on wireless body area network (WBAN) for health monitoring system: Implementation protocols. Communication on Applied Electronics, Foundation of Computer Science, Newyork, USA, 4(7).

      [54] Ullah, F., Abdullah, A. H., Kaiwartya, O., & Cao, Y. (2017). TraPy-MAC: traffic priority aware medium access control protocol for wireless body area network. Journal of medical systems, 41(6), 93. https://doi.org/10.1007/s10916-017-0739-y.

      [55] Kwak, K. S., Ullah, S., & Ullah, N. (2010, November). An overview of IEEE 802.15.6 standard. In Applied Sciences in Biomedical and Communication Technologies (ISABEL), 2010 3rd International Symposium on (pp. 1-6). IEEE.

      [56] Rahim, H. A., Malek, F., Soh, P. J., Hisham, N., Romli, A., Rani, K. A. & Fuad, A. (2017). On body characterization for on-body radio propagation channel using wearable textile monopole antenna. Journal of Telecommunication, Electronic and Computer Engineering (JTEC), nine (1-4), 7-10.

      [57] Cresswell, K., & Sheikh, A. (2013). Organizational issues in the implementation and adoption of health information technology innovations: an interpretative review. International journal of medical informatics, 82(5), e73-e86. https://doi.org/10.1016/j.ijmedinf.2012.10.007

      [58] Sukkird, V., & Shirahada, K. (2015). Technology challenges to healthcare service innovation in aging Asia: Case of value co-creation in emergency medical support system. Technology in Society, 43, 122-128. https://doi.org/10.1016/j.techsoc.2015.08.002.

      [59] Yousefifard, N., Abbasi, M., & Jourmand, R. (2013). Using Multi-Cloud Approach to Enhance the Protection of Patient Privacy in Electronic Health Records.

      [60] Gong, Z., Xiao, Y., Long, Y., & Yang, Y. (2017, July). Research on database ciphertext retrieval based on homomorphic encryption. In Electronics Information and Emergency Communication (ICEIEC), 2017 7th IEEE International Conference on (pp. 149-152). IEEE.

      [61] Elmogazy, H., & Bamasak, O. (2013, December). Towards healthcare data security in cloud computing. In Internet Technology and Secured Transactions (ICITST), 2013 8th International Conference for (pp. 363-368). IEEE.

      [62] Marwan, M., Kartit, A., & Ouahmane, H. (2016). Cloud-based medical image issues. International Journal of Applied Engineering Research, 11(5), 3713-3719.

      [63] Bellam, R. B., Coyle, M. P., Krishnan, P., & Rajan, E. G. (2015, September). Issues while migrating medical imaging services on cloud based infrastructure. In Next Generation Computing Technologies (NGCT), 2015 1st International Conference on (pp. 109-114). IEEE.

      [64] Jees, P., & Diya, T. (2016). Medical Image Protection in Cloud System. Matrix, two, three.

      [65] Hassanalieragh, M., Page, A., Soyata, T., Sharma, G., Aktas, M., Mateos, G. & Andreescu, S. (2015, June). Health monitoring and management using Internet-of-Things (IoT) sensing with cloud-based processing: Opportunities and challenges. In 2015 IEEE international conference on services computing (SCC) (pp. 285-292). IEEE.

      [66] Islam, S. R., Kwak, D., Kabir, M. H., Hossain, M., & Kwak, K. S. (2015). The internet of things for health care: a comprehensive survey. IEEE Access, 3, 678-708. https://doi.org/10.1109/ACCESS.2015.2437951.

      [67] Yang, Y., Zhang, S., Yang, J., Li, J., & Li, Z. (2014). Targeted fully homomorphic encryption based on a double decryption algorithm for polynomials. Tsinghua Science and Technology, 19(5), 478-485. https://doi.org/10.1109/TST.2014.6919824.

      [68] Zhang, M., Raghunathan, A., & Jha, N. K. (2014). Trustworthiness of Medical Devices and Body Area Networks. Proceedings of the IEEE, 102(8), 1174-1188. https://doi.org/10.1109/JPROC.2014.2322103.

      [69] Lee, Y. S., Alasaarela, E., & Lee, H. J. (2014). An efficient encryption scheme using elliptic curve cryptography (ECC) with symmetric algorithm for healthcare system. International journal of security and its applications, 8(3), 63-70. https://doi.org/10.14257/ijsia.2014.8.3.07.

      [70] RoÄek, A., SlavíÄek, K., Dostál, O., & Javorník, M. (2016). A new approach to fully reversible watermarking in medical imaging with breakthrough visibility parameters. Biomedical Signal Processing and Control, 29, 44-52. https://doi.org/10.1016/j.bspc.2016.05.005.

      [71] Sajedi, H. (2018). Applications of data hiding techniques in medical and healthcare systems: a survey. Network Modeling Analysis in Health Informatics and Bioinformatics, 7(1), 6. https://doi.org/10.1007/s13721-018-0169-x.

      [72] Jiang, Q., Ma, J., Wei, F., Tian, Y., Shen, J., & Yang, Y. (2016). An untraceable temporal-credential-based two-factor authentication scheme using ECC for wireless sensor networks. Journal of Network and Computer Applications, 76, 37-48. https://doi.org/10.1016/j.jnca.2016.10.001.

      [73] Bhatia, G., Lala, A., Chaurasia, A., & Rajpal, R. (2013, January). Implementation of Cloud computing technology for the improvement of entire healthcare services in India. In Advances in Technology and Engineering (ICATE), 2013 International Conference on (pp. 1-5). IEEE.

      [74] Sharma, A., Singh, A. K., & Ghrera, S. P. (2015). Secure hybrid robust watermarking technique for medical images. Procedia Computer Science, 70, 778-784. https://doi.org/10.1016/j.procs.2015.10.117.

      [75] Malhotra, K., Gardner, S., & Patz, R. (2007, April). Implementation of elliptic-curve cryptography on mobile healthcare devices. In Networking, Sensing and Control, 2007 IEEE International Conference on (pp. 239-244). IEEE.

      [76] Arka, I. H., & Chellappan, K. (2014). Collaborative compressed i-cloud medical image storage with decompress viewer. Procedia Computer Science, 42, 114-121. https://doi.org/10.1016/j.procs.2014.11.041.

      [77] Elayan, H., Shubair, R. M., & Kiourti, A. (2017, March). Wireless sensors for medical applications: status and future challenges. In Antennas and Propagation (EUCAP), 2017 11th European Conference on (pp. 2478-2482). IEEE.

      [78] Arsalan, M., Qureshi, A. S., Khan, A., & Rajarajan, M. (2017). Protection of medical images and patient related information in healthcare: Using an intelligent and reversible watermarking technique. Applied Soft Computing, 51, 168-179. https://doi.org/10.1016/j.asoc.2016.11.044.

      [79] Noel, A. B., Abdaoui, A., Elfouly, T., Ahmed, M. H., Badawy, A., & Shehata, M. S. (2017). Structural health monitoring using wireless sensor networks: A comprehensive survey. IEEE Communications Surveys & Tutorials, 19(3), 1403-1423. https://doi.org/10.1109/COMST.2017.2691551.

      [80] Zhang, K., Ni, J., Yang, K., Liang, X., Ren, J., & Shen, X. S. (2017). Security and privacy in smart city applications: Challenges and solutions. IEEE Communications Magazine, 55(1), 122-129. https://doi.org/10.1109/MCOM.2017.1600267CM.

      [81] Singh, J. P., Mishra, M. K., & Khan, M. A. (2017, July). Energy-efficient approach towards video-based sensor networks (wireless) beneath barrier coverage. In Computing, Communication and Networking Technologies (ICCCNT), 2017 8th International Conference on (pp. 1-5). IEEE.

      [82] Eide, O. W. (2017). Elliptic Curve Cryptography-Implementation and Performance Testing of Curve Representations (Master's thesis).

      [83] Wu, F., Xu, L., Kumari, S., & Li, X. (2017). A new and secure authentication scheme for wireless sensor networks with formal proof. Peer-to-Peer Networking and Applications, 10(1), 16-30. https://doi.org/10.1007/s12083-015-0404-5.

      [84] Gonzalez, N., Miers, C., Redigolo, F., Simplicio, M., Carvalho, T., Näslund, M., & Pourzandi, M. (2012). A quantitative analysis of current security concerns and solutions for cloud computing. Journal of Cloud Computing: Advances, Systems and Applications, 1(1), 11. https://doi.org/10.1186/2192-113X-1-11.

      [85] Garkoti, G., Peddoju, S. K., & Balasubramanian, R. (2014, December). Detection of insider attacks in cloud based e-healthcare environment. In Information Technology (ICIT), 2014 International Conference on (pp. 195-200). IEEE.

      [86] Sun, D. Z., Li, J. X., Feng, Z. Y., Cao, Z. F., & Xu, G. Q. (2013). On the security and improvement of a two-factor user authentication scheme in wireless sensor networks. Personal and ubiquitous computing, 17(5), 895-905. https://doi.org/10.1007/s00779-012-0540-3.

      [87] Kester, Q. A., Nana, L., Pascu, A. C., Gire, S., Eghan, J. M., & Quaynor, N. N. (2015, June). A security technique for authentication and security of medical images in health information systems. In Computational Science and Its Applications (ICCSA), 2015 15th International Conference on (pp. 8-13). IEEE.

      [88] Tomar, A. S., Shankar, S. K., Sharma, M., & Bakshi, A. (2016, September). Enhanced Image Based Authentication with Secure Key Exchange Mechanism Using ECC in Cloud. In International Symposium on Security in Computing and Communication (pp. 63-73). Springer, Singapore. https://doi.org/10.1007/978-981-10-2738-3_6.

      [89] Chauhan, R., & Kumar, A. (2013, November). Cloud computing for improved healthcare: Techniques, potential and challenges. In E-Health and Bioengineering Conference (EHB), 2013 (pp. 1-4). IEEE.

      [90] Kester, Q. A., Nana, L., & Pascu, A. C. (2013, November). A novel cryptographic encryption technique for securing digital images in the cloud using AES and RGB pixel displacement. In Modelling Symposium (EMS), 2013 European (pp. 293-298). IEEE.

      [91] Luarasi, T., Durresi, M., & Durresi, A. (2013, September). Healthcare Based on Cloud Computing. In Network-Based Information Systems (NBiS), 2013 16th International Conference on (pp. 113-118). IEEE.

      [92] MAHDI HASHIM, M. O. H. A. M. M. E. D., RAHIM, M., & SHAFRY, M. (2017). IMAGE STEGANOGRAPHY BASED ON ODD/EVEN PIXELS DISTRIBUTION SCHEME AND TWO PARAMETERS RANDOM FUNCTION. Journal of Theoretical & Applied Information Technology, 95(22).

      [93] HASHIM, M., RAHIM, M., SHAFRY, M., & ALWAN, A. A. (2018). A REVIEW AND OPEN ISSUES OF MULTIFARIOUS IMAGE STEGANOGRAPHY TECHNIQUES IN SPATIAL DOMAIN. Journal of Theoretical & Applied Information Technology, 96(4).

  • Downloads

  • How to Cite

    Taha, M. S., Rahim, M. S. M., Hashim, M. M., & Johi, F. A. (2018). Wireless body area network revisited. International Journal of Engineering & Technology, 7(4), 3494-3504. https://doi.org/10.14419/ijet.v7i4.21725