Decomposition and release rate of asystasiagangetica (l.) T. Anderson litter nutrient using litterbag method

 
 
 
  • Abstract
  • Keywords
  • References
  • PDF
  • Abstract


    The research aimed to determine the rate of decomposition and release of A. gangetica litter in conditions without shading and shading, and in turn it can be simulated the effects of environmental factors on the decomposition rate and contribution of A. gangeticalitter nutrients to the soil. Research was carried out at Research Farm, Faculty of Agriculture, UISU, Medan, North Sumatra, from January to April 2018. The study used a non-factorial randomized block design with five replications. The treatment is shade which consisting of two levels namely without shading, and with 50% shading. The results showed that the litter weight of A. gangetica decreases with the length of the decomposition period. The decrease in litter weight of A. gangetica is more influenced by the decomposition period than the shade treatment. However, decomposition rate, decreased nutrient concentration in litter tissue, and increased litter release of A. gangetica is affected by shading and decomposition period. Decomposition rate, decrease in litter concentration and release of litter nutrients more quickly in conditions without shadingby the longer decomposition period.

     

     


  • Keywords


    decomposition rate, A. gangetica, litterbag method

  • References


      [1] O. A. Adetula, “Asystasiagangetica (L.) Anderson. Record from PROTA4U.Grubben GJH and Denton OA (Editors).PROTA (Plant Resources of Tropical Africa/Ressourcesvégétales de l’Afriquetropicale),” 2004. .

      [2] P. H., “Asystasiagangetica (L.) subsp. micrantha (Nees).Informasiorganismepengganggutanaman.,” PusatPenelitianKelapaSawit, vol. 1, pp. 1–2, 2011.

      [3] E. S. Asbur, Y., Yahya, S., Murtilaksono, K., Sudradjatd, Sutarta, “Peran tanaman penutup tanah terhadap neracahara N, P, dan K di perkebunan kelapa sawit menghasilkan di Lampung Selatan,” J. Pen. KelapaSawit, vol. 23, no. 2, pp. 53–60, 2015.

      [4] Y. Ariyanti, M., Mubarok, S., Asbur, “Study of Asystasiagangetica (L.) T. Anderson as cover crop against soil water content in Mature Oil Palm Plantation,” J. Agron., vol. 16, no. 4, pp. 154–159, 2017.

      [5] B. H. Odharva B, Beekrumb S, Akuala U, “Preliminary assessment of nutritional leafy vegetables in Kwa Zulu-Natal,” J. Food Compos. Anal., vol. 20, pp. 430–435, 2007.

      [6] E. S. Asbur, Y., Yahya, S., Murtilaksono, K., Sudradjat, and Sutarta, “The roles of Asystasiagangetica (L.) T. Anderson and ridge terrace in reducing soil erosion and nutrient losses in oil palm llantation in South Lampung, Indonesia,” J. Penelit. Kelapa Sawit, vol. 23, no. 2, pp. 53–60, 2016.

      [7] E. S. Asbur, Y., Yahya, S., Murtilaksono, K., Sudradjatd, Sutarta, “Study of Asystasiagangetica (L.)Anderson utilization ascover crop under mature oil palm with different ages,” Int. J. Sci. Basic Appl. Res., vol. 19, no. 2, pp. 137–148, 2015.

      [8] A. Theurillat, J.P., Guisan, Potential impact of climate change on vegetation in theEuropean Alps: a review. Clim. Change, 2001.

      [9] S. Waddington, J.M., Rochefort, L., Campeau, “Sphagnum production anddecomposition in a restored cutover peatland,” Wetl. Ecol. Manag., 2003.

      [10] R. Bragazza, L., Siffi, C., Iacumin, P., Gerdol, Mass loss and nutrient releaseduring litter decay in peatland: the role of microbial adaptability to litterchemistry. Soil Biology and Biochemistry. 2017.

      [11] M. R. Turetsky, S. E. Crow, R. J. Evans, D. H. Vitt, and R. K. Wieder, “Trade-offs in resource allocation among moss species control decomposition in boreal peatlands,” J. Ecol., vol. 96, no. 6, pp. 1297–1305, Nov. 2008.

      [12] M. T. Hagemann, U., Moroni, oss and lichen decomposition in old-growth and harvestedhigh-boreal forests estimated using the litterbag andminicontainer methods. oil Biology & Biochemistry, 2015.

      [13] R. L. Liu, Y., Chen, Y.M., Zhang, J., Yang, W.Q., Zhu, P., He, X., Deng, C.C., He, “Change infoliar litter decomposition of woody plants with elevation across an alpine foresttundraecotone in eastern Tibet Plateau,” Plant Ecol, p. 218:495-504, 2016.

      [14] I. J. Germer, S., van Dongena, R., Kern, Decomposition of cherry tree prunings and their short-term impact on soilquality.Applied Soil Ecology. 2017.

      [15] V. Bérubé, V., Rochefort, Production and decomposition rates of different fen species as targets forrestoration.Ecological Indicators, vol. 91. 2018.

      [16] B. Berg, “Foliar litter decomposition: a conceptual model with focus on Pine(Pinus) litter-a genus with global distribution.ISRN Forestry,” pp. 1–22, 2014.

      [17] C. E. Prescott, “Do rates of litter decomposition tell us anything we really need to know?,” For. Ecol. Manage., vol. 220, no. 1–3, pp. 66–74, Dec. 2005.

      [18] E. . Asbur, Y., Yahya, S., Murtilaksono, K., Sudradjat, Sutarta, “The potency of Asystasiagangetica (L.) T. Anderson as cover crop under mature oil palm,” in Proceeding The 3rd International Conference on Multidisciplinary Research, 2013.

      [19] O. J. . Bocock, K.L., Gilbert, “The disappearance of leaf litter under differentwoodlandconditions.Plant and Soil,” 1957.

      [20] P. Briones, M.J.I., Ineson, Decomposition of Eucalyptus leavesin litter mixtures, Soil Biol. Biochem. 1996.

      [21] P. Dalias, I. Mprezetou, and A. Y. Troumbis, “Use of a modified litterbag technique for the study of litter mixtures,” Eur. J. Soil Biol., vol. 39, no. 2, pp. 57–64, Apr. 2003.

      [22] S. Trofymow, J.A., Moore, T.R., Titus, B., Prescott, C., Morrison, I., Siltanen, M., Smith, S., Fyles, J., Wein, R., Camire´, C., Duschene, L., Kozak, L., Kranabetter, M., Visser, “Rates oflitter decomposition over 6 years in Canadian forests: Influenceof litter quality and climate,” Can. J. For. Res., vol. 32, pp. 789–804, 2002.

      [23] L. Hobbie, S.E., Gough, Litter decomposition in moist acidic and non-acidic tundra with different glacial histories. Oecologia, 2004.

      [24] C. KURZBESSON, M. COUTEAUX, J. THIERY, B. BERG, and J. REMACLE, “A comparison of litterbag and direct observation methods of Scots pine needle decomposition measurement,” Soil Biol. Biochem., vol. 37, no. 12, pp. 2315–2318, Dec. 2005.

      [25] C. Ribeiro, M. Madeira, and M. . Araújo, “Decomposition and nutrient release from leaf litter of Eucalyptus globulus grown under different water and nutrient regimes,” For. Ecol. Manage., vol. 171, no. 1–2, pp. 31–41, Nov. 2002.

      [26] S. I. Inc., SAS/STATTM Guide for Personal Computers, Version 6ed. Cary, NC: SAS Institute Inc., 2004.

      [27] W. A. Lyons, K.G., McCarthy, “Early decomposition of ashe juniper (Juniperusashei) wood in open and shadedhabitat,” Rangel. Ecol Manag., p. 63:359-365, 2010.

      [28] K. I. Predick, S. R. Archer, S. M. Aguillon, D. A. Keller, H. L. Throop, and P. W. Barnes, “UV-B radiation and shrub canopy effects on surface litter decomposition in a shrub-invaded dry grassland,” J. Arid Environ., vol. 157, pp. 13–21, Oct. 2018.

      [29] L. Wang et al., “Impacts of soil fauna on lignin and cellulose degradation in litter decomposition across an alpine forest-tundra ecotone,” Eur. J. Soil Biol., vol. 87, pp. 53–60, May 2018.

      [30] S. D. Baker, N.R., Allison, “Ultraviolet photodegradation facilitates microbial litterdecomposition in a Mediterranean climate,” Ecology, vol. 96, pp. 1994–2003, 2015.

      [31] C. . Austin, A.T., Ballaré, “Dual role of lignin in plant litter decomposition in terrestrialecosystems,” in Proc. Natl. Acad. Sci. Unit. States Am., 2010, pp. 4618–4622.

      [32] J. Wang, L. Liu, X. Wang, and Y. Chen, “The interaction between abiotic photodegradation and microbial decomposition under ultraviolet radiation,” Glob. Chang. Biol., vol. 21, no. 5, pp. 2095–2104, May 2015.

      [33] N. C. Chuyong, G.B., Newbery, D.M., Songwe, Litter breakdown and mineralization in a central African rain forest dominated by ectomycorrhizal trees. Biogeochemistry, 1999.

      [34] A. Fioretto, A., Nardo, C.D., Papa, S., Fuggi, “Lignin and cellulose degradation andnitrogen dynamics during decomposition of three leaf litter species in aMediterranean ecosystem, Soil Biol,” Biochem, vol. 37, no. 6, pp. 1083–1091, 2005.

      [35] K. Don, A., Kalbitz, “Amounts and degradability of dissolved organic carbon fromfoliar litter at different decomposition stages, Soil Biol,” Biochem, vol. 37, no. 12, pp. 2171–2179, 2005.

      [36] B. Lemma, I. Nilsson, D. B. Kleja, M. Olsson, and H. Knicker, “Decomposition and substrate quality of leaf litters and fine roots from three exotic plantations and a native forest in the southwestern highlands of Ethiopia,” Soil Biol. Biochem., vol. 39, no. 9, pp. 2317–2328, Sep. 2007.

      [37] D. C. Hunter, M.D., Adl, S., Pringle, M., Coleman, “Relative effects of macroinvertebratesand habitat on the chemistry of litter during decomposition,” Pedbiologia, vol. 47, no. 2, pp. 101–115, 2003.

      [38] H. A. Chapin III, F.S., Matson, P.A., Mooney, Principles ofTerrestrialEcosystem Ecology. New York, Inc.: Springer-Verlag, 2002.

      [39] S. H. Sulistiyanto, Y., Rieley, J.O., Lamin, “Laju dekomposisi dan pelepasan hara dari serasah pada dua sub-tipe hutan rawagambut di Kalimantan Tengah,” JurnalManajemenHutanTropika, vol. 9, no. 2, pp. 1–14, 2005.

      [40] H. M. Rogers, “Litterfall, decomposition and nutrient release in a lowland tropical rain forest, Morobe Province, Papua New Guinea,” J. Trop. Ecol., vol. 18, pp. 449–456, 2002.

      [41] J. W. Swift, M.J., Heal, O.W., Anderson, Decomposition in terrestrial ecosystems. Oxford: BlackwellScientific, 1979.

      [42] M. Bravo-Oviedo, A., Ruiz-Peinado, R., Onrubia, R., del Río, Thinning alters the early-decomposition rate and nutrientimmobilization-release pattern of foliar litter in Mediterranean oak-pinemixed stands. Forest Ecology and Management. 2017


 

View

Download

Article ID: 21665
 
DOI: 10.14419/ijet.v7i2.5.21665




Copyright © 2012-2015 Science Publishing Corporation Inc. All rights reserved.