Review on dye-sensitized solar cells based on polymer electrolytes

  • Authors

    • Ho Soonmin
    • Mariyappan Shanmugam
    • Meet Mordiya
    • Jaysukh H. Markna
    https://doi.org/10.14419/ijet.v7i4.21529
  • Dye-sensitized solar cells (DSSCs) have received significant attention due to easy fabrication process, environmental friendli-ness, low production cost, simple structure and high power conversion efficiency. This type of solar cell can convert visible light into electricity. Light is absorbed by a sensitizer, in order to harvest a large fraction of sunlight. Researchers reported DSSCs using polymer electrolyte exhibiting better stability than the DSSCs with liquid electrolyte. Overall solar (standard AM 1.5) to current conversion efficiencies over 9 % have been reached.

  • References

    1. [1] L. Raniero, C.L. Ferreira, L.R. Cruz, A.L. Pinto, R.M. Alves, Photoconductivity activation in PbS thin films grown at room temperature by chemical bath deposition, Physica B: Condensed Matter 405 (2010) 1283-1286. https://doi.org/10.1016/j.physb.2009.11.068.

      [2] A. Kassim, S.M. Ho, L.K. Siang, S. Nagalingam, Surface morphology of CuS thin films observed by atomic force microscopy, Sultan Qaboos University Journal of Science (2011) 24-33.

      [3] W.C. Song, J.H. Lee, Growth and characterization of ZnxCd1-xS films prepared by using chemical bath deposition for photovoltaic devices, Journal of the Korean Physical Society 54 (2009) 1660-1665. https://doi.org/10.3938/jkps.54.1660.

      [4] K. Anuar, W.T. Tan, S.M. Ho, M.S. Atan, K.A. Dzulkefly, M.H. Jelas, N. Saravanan, Preparation and characterization of chemically deposited Cu4SnS4 thin films, Journal of Ultra Chemistry 5 (2009) 21-26.

      [5] A.U. Ubale, Effect of complexing agent on growth process and properties of nanostructured Bi2S3 thin films deposited by chemical bath deposition method, Materials Chemistry and Physics 121 (2010) 555-560. https://doi.org/10.1016/j.matchemphys.2010.02.021.

      [6] S.M. Ho, K. Anuar, S. Nagalingam, W.T. Tan, Influence of pH on the properties of chemical bath deposited Ni4S3 thin films, Bangladesh Journal of Scientific and Industrial Research 46 (2011) 243-246.

      [7] B. Asenjo, C. Guilln, A.M. Chaparro, E. Saucedo, V. Bermudez, D. Lincot, J. Herrero, M.T. Gutirrez, Properties of In2S3 thin films deposited onto ITO/glass substrates by chemical bath deposition, Journal of Physics and Chemistry of Solids 71 (2010) 1629-1633. https://doi.org/10.1016/j.jpcs.2010.09.011.

      [8] S.M. Ho, Scanning electron microscopy study of surface morphology of Ni3Pb2S2 thin films, Asian Journal of Chemistry 27 (2011) 3851-3853.

      [9] H. Khallaf, I.O. Oladeji, L. Chow, Optimization of chemical bath deposited CdS thin films using nitrilotriacetic acid as a complexing agent, Thin Solid Films 516 (2008) 5967-5973. https://doi.org/10.1016/j.tsf.2007.10.079.

      [10] W.T. Tan, S. Nagalingam, S.M. Ho, K. Anuar, Influence of pH on the morphology properties of ZnSe thin films studied by atomic force microscopy, European Journal of Scientific Research 66 (2011) 592-599.

      [11] B.A. Gregg, The photoconversion mechanism of excitonic solar cells, MRS Bulletin 30 (2005) 20-22. https://doi.org/10.1557/mrs2005.3.

      [12] H.W. Hillhouse, C.B. Matthew, Solar cells from colloidal nanocrystals: Fundamentals, materials, devices, and economics, Current Opinion in Colloid & Interface Science 14 (2009) 245-259. https://doi.org/10.1016/j.cocis.2009.05.002.

      [13] M. Wright, U. Ashraf, and Organic—inorganic hybrid solar cells: A comparative review, Solar Energy Materials and Solar Cells 107 (2012) 87-111. https://doi.org/10.1016/j.solmat.2012.07.006.

      [14] M. Grätzel, Dye-sensitized solar cells, Journal of Photochemistry and Photobiology C: Photochemistry Reviews 4 (2003) 145-153. https://doi.org/10.1016/S1389-5567(03)00026-1.

      [15] A. Hagfeldt, V. Nikolaos, Dye-sensitized solar cells In The Future of Semiconductor Oxides in Next-Generation Solar Cells (2018) 183-239.

      [16] S. Mathew, Y. Aswani, G. Peng, H. Robin, F. Basile, A. Negar, T. Ivano, R. Ursula, Dye-sensitized solar cells with 13 % efficiency achieved through the molecular engineering of porphyrin sensitizers, Nature Chemistry 6 (2014) 242-247. https://doi.org/10.1038/nchem.1861.

      [17] S. Ito, N.M. Takurou, C. Pascal, L. Paul, G. Carole, K.N. Mohammad, G. Michael, Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10 %, Thin Solid Films 516 (2008) 4613-4619. https://doi.org/10.1016/j.tsf.2007.05.090.

      [18] T. Horiuchi, M. Hidetoshi, S. Kouichi, U. Satoshi, High efficiency of dye-sensitized solar cells based on metal-free indoline dyes, Journal of the American Chemical Society 126 (2004) 12218-12219. https://doi.org/10.1021/ja0488277.

      [19] G.K. Mor, S. Karthik, P. Maggie, K.V. Oomman, A.G. Craig, Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells, Nano Letters 6 (2006) 215-218. https://doi.org/10.1021/nl052099j.

      [20] C. Gao, X. Li, B. Lu, L. Chen, Y. Wang, F. Teng, J. Wang, Z. Zhang, X. Pan, E. Xie, A facile method to prepare SnO2 nanotubes for use in efficient SnO2–TiO2 core–shell dye-sensitized solar cells, Nanoscale 4 (2012) 3475-3481. https://doi.org/10.1039/c2nr30349c.

      [21] J. Wu, G. Chen, H. Yang, C. Ku, J. Lai, Effects of dye adsorption on the electron transport properties in ZnO-nanowire dye-sensitized solar cells, Applied Physics Letters 90 (2007) https://doi.org/10.1063/1.2742639.

      [22] Z. Wang, K. Hiroshi, K., Takeo, A. Hironori, Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell, Coordination Chemistry Reviews 248 (2004) 1381-1389. https://doi.org/10.1016/j.ccr.2004.03.006.

      [23] M. Grätzel, Dye-sensitized solid-state heterojunction solar cells, MRS Bulletin 30 (2005) 23-27. https://doi.org/10.1557/mrs2005.4.

      [24] S. Mathew, Y. Aswani, G. Peng, H. Robin, F.E. Basile, A. Negar, T. Ivano, R. Ursula, K.N. Md, G. Michael, Dye-sensitized solar cells with 13 % efficiency achieved through the molecular engineering of porphyrin sensitizers, Nature Chemistry 6 (2014) 242-247. https://doi.org/10.1038/nchem.1861.

      [25] W.M. Campbell, W.J. Kenneth, W. Pawel, W. Klaudia, J.W. Penny, C.G. Keith, S. Lukas, Highly efficient porphyrin sensitizers for dye-sensitized solar cells, The Journal of Physical Chemistry C 111 (2007) 11760-11762. https://doi.org/10.1021/jp0750598.

      [26] K. Millington, Dye-sensitized cells. In J. Garche, C.K. Dyer, P.T. Mosely, Z. Ogumi, D.A.J. Rand, B. Scrosati, (1st ed), Encyclopedia of electrochemical power sources, Elsevier Science, (2009) 10-21.

      [27] K.A. Tsokos, Physics for the IB Diploma, (2010) 836.

      [28] J. Perlin, The silicon Solar Cells Turns 50, Journal of Chemical Information and Modeling 53 (2013) 1689–1699. https://doi.org/10.1021/ci400128m.

      [29] C.D. Grant, A.M. Schwartzberg, G.P. Smestad, J. Kowalik, L.M. Tolbert, J.Z. Zhang, Characterization of nanocrystalline and thin film TiO2 solar cells with poly(3-undecyl-2,2’-bithiophene) as a sensitizer and hole conductor, Journal of Electroanalytical Chemistry 522 (2002) 40–48. https://doi.org/10.1016/S0022-0728(01)00715-X.

      [30] B. O’ Regan, M. Gratzel, A Low-Cost, High-Efficiency Solar Cell Based on Dye-Sensitized Colloidal TiO2 Films, Nature 353 (1991) 737–740. https://doi.org/10.1038/353737a0.

      [31] M.I. Baraton, Nano-TiO2 for Dye-Sensitized Solar Cells, Recent Patents on Nanotechnology 6 (2012) 10–15. https://doi.org/10.2174/187221012798109273.

      [32] F. Gao, Y. Wang, D. Shi, J. Zhang, M. Wang, X. Jing, M. Grätzel, Enhance the optical absorptivity of nanocrystalline TiO2film with high molar extinction coefficient ruthenium sensitizers for high performance dye-sensitized solar cells, Journal of the American Chemical Society 130 (2008) 10720–10728. https://doi.org/10.1021/ja801942j.

      [33] A.K. Hinsch, R. Kern, R.M. Sastrawan, I. Uhlendorf, A. Hinsch, J. Kroon, R. Kern, R. Sastrawan, A. Meyer, A. Meyer, Long-Term Stability and Efficiency of Dye-Sensitized Solar Cellsâ€, NETHERLANDS ENERGY RESEARCH FOUNDATION -PUBLICATIONS- ECN RX; ALL European Photovoltaic Solar Energy Conference 17th, European Photovoltaic Solar Energy Conference, 11 (2001) 1–4.

      [34] P.M. Sommeling, R. Van, H. Smit, D.B. Van, D.R. Mahieu, J.M. Kroon, Reproducible manufacturing of dye-sensitized solar cells on a semi-automated baseline, Progress in Photovoltaics: Research and Applications 11 (2003) 207–220. https://doi.org/10.1002/pip.481.

      [35] https://www.ecn.nl. [accessed on 5 May 2018]

      [36] A. Hinsch, J.M. Kroon, M. Späth, J.A.M. Roosmalen, B.N. Van, P.M. Sommeling, J. Holzbock, Long-Term Stability of Dye Sensitized Solar Cells for Large Area Power Applications, 16th European Photovoltaic Solar Energy Conference and Exhibition 1702 (2000) 1–7.

      [37] S. Dai, J. Weng, Y. Sui, S. Chen, S. Xiao, Y. Huang, K. Wang, The design and outdoor application of dye-sensitized solar cells, Inorganica Chimica Acta 361 (2008) 786–791. https://doi.org/10.1016/j.ica.2007.04.018.

      [38] L. Yalçin, R. Öztürk, Material Development for Dye Solar Modules: Results from an Integrated Approach, Journal of Optoelectronics and Advanced Materials 15 (2013) 326–334.

      [39] J. Yum, N. Shogo, D. Kim, Y. Shozo, Improved performance in dye sensitized solar cells employing TiO2 photoelectrodes coated with metal hydroxides, The Journal of Physical Chemistry B 110 (2006) 3215-3219. https://doi.org/10.1021/jp0564593.

      [40] https://www.businesswire.com/news/home/20091012005499/en/G24-Innovations-Ships-World%E2%80%99s-Commercial-Application-DSSC. Accessed on 18 May 2018.

      [41] http://gcell.com/g24-power-ltd-announcement. Accessed on 17 May 2018.

      [42] T. Toyoda, T. Sano, J. Nakajima, S. Doi, S. Fukumoto, Outdoor performance of large scale DSC modules, Journal of Photochemistry and Photobiology A: Chemistry 164 (2004) 203-207. https://doi.org/10.1016/j.jphotochem.2003.11.022.

      [43] A. Hinsch, H. Brandt, W. Veurman, S. Hemming, M. Nittel, U. Würfel, K. Fichter, Dye solar modules for facade applications: Recent results from project ColorSol, Solar Energy Materials and Solar Cells 93 (2009) 820–824. https://doi.org/10.1016/j.solmat.2008.09.049.

      [44] M. Ikegami, J. Suzuki, K. Teshima, M. Kawaraya, T. Miyasaka, Improvement in durability of flexible plastic dye-sensitized solar cell modules, Solar Energy Materials and Solar Cells 93 (2009) 836–839. https://doi.org/10.1016/j.solmat.2008.09.051.

      [45] H. Singh, Synthesis of mesoporous titanium dioxide films for dye-sensitized solar cells, (2002) Master Thesis, Indian Institute of Technology Roorkee, India.

      [46] W. Zhou, H. Yang, Z. Fang, A novel model for photovoltaic array performance prediction, Applied Energy 84 (2007) 1187–1198. https://doi.org/10.1016/j.apenergy.2007.04.006.

      [47] M.A. Moradiya, A. Dangodara, J. Pala, C.R. Savaliya, D. Dhruv, V.R. Rathod, A.D. Joshi, N.A. Shah, D. Pandya, J.H. Markna, A natural tomato slurry as a photosensitizer for dye-sensitized solar cells with TiO 2 /CuO composite thin films, Separation Science and Technology (2018) https://doi.org/10.1080/01496395.2018.1444053.

      [48] A. Mbonyiryivuze, I. Omollo, B.D. Ngom, B. Mwakikunga, S.M. Dhlamini, E. Park, M. Maaza, Natural Dye Sensitizer for GrÓ“tzel Cells: Sepia Melanin, Physics and Materials Chemistry 3 (2015) 1-6.

      [49] J. Wu, L. Zhang, J. Lin, M. Huang, Y. Huang, L. Fan, G. Luo, Electrolytes in dye-sensitized solar cells, Chemical Reviews 115 (2015) 2136-2173. https://doi.org/10.1021/cr400675m.

      [50] F. Fabregat, B. Juan, G. Germa, B. Gerrit, H. Anders, Influence of electrolyte in transport and recombination in dye-sensitized solar cells studied by impedance spectroscopy, Solar Energy Materials and Solar Cells 87 (2005) 117-131. https://doi.org/10.1016/j.solmat.2004.07.017.

      [51] H.J. Snaith, S. Lukas, Advances in liquidâ€electrolyte and solidâ€state dyeâ€sensitized solar cells, Advanced Materials 19 (2007) 3187-3200. https://doi.org/10.1002/adma.200602903.

      [52] J.R. Jennings, Y. Liu, W. Qing, Efficiency limitations in dye-sensitized solar cells caused by inefficient sensitizer regeneration, The Journal of Physical Chemistry C 115 (2011) 15109-15120. https://doi.org/10.1021/jp2053053.

      [53] P. Wang, M. Shaik, E.M. Jacques, K. Mohammad, S. Takashi, G. Michael, A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte, Nature Materials 2 (2003) 402-408. https://doi.org/10.1038/nmat904.

      [54] W. Kubo, K. Takayuki, H. Kenji, W. Yuji, Y. Shozo, Quasi-solid-state dye-sensitized solar cells using room temperature molten salts and a low molecular weight gelator, Chemical Communications 4 (2002) 374-375. https://doi.org/10.1039/b110019j.

      [55] J.H. Wu, S.C. Hao, Z. Lan, J.M. Lin, M.L. Huang, Y.F. Huang, L.Q. Fang, S. Yin, S. Tsugio, A Thermoplastic Gel Electrolyte for Stable Quasiâ€Solidâ€State Dyeâ€Sensitized Solar Cells, Advanced Functional Materials 17 (2007) 2645-2652. https://doi.org/10.1002/adfm.200600621.

      [56] R. Komiya, L. Han, Y. Ryohsuke, I. Ashraful, M. Takehito, Highly efficient quasi-solid state dye-sensitized solar cell with ion conducting polymer electrolyte, Journal of Photochemistry and Photobiology A: Chemistry 164 (2004) 123-127. https://doi.org/10.1016/j.jphotochem.2003.11.015.

      [57] J. Xia, F. Li, C. Huang, Z. Jin, J. Lei, Improved stability quasi-solid-state dye-sensitized solar cell based on polyether framework gel electrolytes, Solar Energy Materials and Solar Cells 90 (2006) 944-952. https://doi.org/10.1016/j.solmat.2005.05.021.

      [58] G.P. Kalaignan, M. Kang, Y. Kang, Effects of compositions on properties of PEO–KI–I2 salts polymer electrolytes for DSSC, Solid State Ionics 177 (2006) 1091-1097. https://doi.org/10.1016/j.ssi.2006.03.013.

      [59] P. Wang, M.Z. Shaik, E. Ivan, G. Michael, High efficiency dye-sensitized nanocrystalline solar cells based on ionic liquid polymer gel electrolyte, Chemical Communications 24 (2002) 2972-2973. https://doi.org/10.1039/B209322G.

      [60] D. Kim, Y. Jeong, S. Kim, D. Lee, J. Song, Photovoltaic performance of dye-sensitized solar cell assembled with gel polymer electrolyte, Journal of Power Sources 149 (2005) 112-116. https://doi.org/10.1016/j.jpowsour.2005.01.058.

      [61] D. Chen, Z. Qian, W. Geng, Z. Hao, J. Li. A novel composite polymer electrolyte containing room-temperature ionic liquids and heteropolyacids for dye-sensitized solar cells, Electrochemistry Communications 9 (2007) 2755-2759. https://doi.org/10.1016/j.elecom.2007.09.013.

      [62] P.K. Singh, K. Kim, H. Rhee, Electrical, optical and photoelectrochemical studies on a solid PEO-polymer electrolyte doped with low viscosity ionic liquid, Electrochemistry Communications 10 (2008) 1769-1772. https://doi.org/10.1016/j.elecom.2008.09.016.

      [63] J. Wu, L. Zhang, D. Wang, S. Hao, J. Lin, Y. Wei, S. Yin, T. Sato, Quasi-solid state dye-sensitized solar cells-based gel polymer electrolytes with poly (acrylamide)–poly (ethylene glycol) composite, Journal of photochemistry and photobiology A: Chemistry 181 (2006) 333-337. https://doi.org/10.1016/j.jphotochem.2005.12.015.

      [64] V.C. Nogueira, L. Claudia, F.N. Ana, A.S. Mauro, and D.P. Marco, Solid-state dye-sensitized solar cell: improved performance and stability using a plasticized polymer electrolyte, Journal of Photochemistry and Photobiology A: Chemistry 181 (2006) 226-232. https://doi.org/10.1016/j.jphotochem.2005.11.028.

      [65] Y. Ren, M. Yang, S. Cai, Z. Zhang, S. Fang, Application of PEO based gel network polymer electrolytes in dye-sensitized photoelectrochemical cells, Solar Energy Materials and Solar Cells 71 (2002) 253–259. https://doi.org/10.1016/S0927-0248(01)00084-8.

      [66] J. Kim, M.S. Kang, Y.J. Kim, J. Won, N. Park, Y.S. Kang, Y. Soo, Dye-sensitized nanocrystalline solar cells based on composite polymer electrolytes containing fumed silica nanoparticles, Chemical Communications (Cambridge, England) 14 (2004) 1662–1663. https://doi.org/10.1039/b405215c.

      [67] M.S. Kang, J.H. Kim, Y.J. Kim, J. Won, N.G. Park, Y.S. Kang, Dye-sensitized solar cells based on composite solid polymer electrolytes, Chemical Communications 7 (2005) 889-891. https://doi.org/10.1039/b412129p.

      [68] J. Joseph, K.M. Son, R. Vittal, W. Lee, K.J. Kim, Quasi-solid-state dye-sensitized solar cells with siloxane poly(ethylene glycol) hybrid gel electrolyte, Semiconductor Science and Technology 21 (2006) 697–701. https://doi.org/10.1088/0268-1242/21/5/023.

      [69] H. Yang, M. Huang, J. Wu, Z. Lan, S. Hao, J. Lin, The polymer gel electrolyte based on poly(methyl methacrylate) and its application in quasi-solid-state dye-sensitized solar cells, Materials Chemistry and Physics 110 (2008) 38–42. https://doi.org/10.1016/j.matchemphys.2008.01.010.

      [70] P.K. Singh, B. Bhattacharya, R.K. Nagarale, S.P. Pandey, K.W. Kim, H.W. Rhee, Ionic liquid doped poly(N-methyl 4-vinylpyridine iodide) solid polymer electrolyte for dye-sensitized solar cell, Synthetic Metals 160 (2010) 950–954. https://doi.org/10.1016/j.synthmet.2010.02.006.

      [71] S.H. Ahn, W.S. Chi, D.J. Kim, S.Y. Heo, J.H. Kim, Honeycomb-like organized TiO2 photoanodes with dual pores for solid-state dye-sensitized solar cells, Advanced Functional Materials 23 (2013) 3901–3908. https://doi.org/10.1002/adfm.201203851.

      [72] T.T. Bui, T. Matrab, V. Woehling, J. Longuet, C. Plesse, G.T.M. Nguyen, F. Goubard, Solid state dye-sensitized solar cells based on polymeric ionic liquid with free imidazolium cation, Electronic Materials Letters 10 (2014) 209–212. https://doi.org/10.1007/s13391-013-2147-x.

      [73] G.P. Salvador, D. Pugliese, F. Bella, A. Chiappone, A. Sacco, S. Bianco, M. Quaglio, New insights in long-term photovoltaic performance characterization of cellulose-based gel electrolytes for stable dye-sensitized solar cells, Electrochimica Acta 146 (2014) 44–51. https://doi.org/10.1016/j.electacta.2014.09.014.

      [74] S. Rudhziah, A. Ahmad, I. Ahmad, N.S. Mohamed, Biopolymer electrolytes based on blend of kappa-carrageenan and cellulose derivatives for potential application in dye sensitized solar cell, Electrochimica Acta 175 (2015) 162–168. https://doi.org/10.1016/j.electacta.2015.02.153.

      [75] M.H. Buraidah, S. Shah, L.P. Teo, I.C. Faisal, M.A. Careem, I. Albinsson, B.E. Mellander, A.K. Arof, High efficient dye sensitized solar cells using phthaloylchitosan based gel polymer electrolytes, Electrochimica Acta 245 (2017) 846-853. https://doi.org/10.1016/j.electacta.2017.06.011.

  • Downloads

  • How to Cite

    Soonmin, H., Shanmugam, M., Mordiya, M., & Markna, J. H. (2018). Review on dye-sensitized solar cells based on polymer electrolytes. International Journal of Engineering & Technology, 7(4), 3001-3006. https://doi.org/10.14419/ijet.v7i4.21529