Facile synthesis, structural and luminescence studies of MgTiO3:Sm3+ nanophosphor for display applications
-
https://doi.org/10.14419/ijet.v7i4.21512 -
Abstract
Luminescence properties of combustion prepared Mg2TiO3:Sm3+ (1-11 mol %) phosphors were studied in the present work. The crystallite size (D) was in the range20- 40 nm as estimated and it was similar to Transmission electron microscopy (TEM) results. The band gap of the materials was in the range 4.45 to 4.87 eV as calculated using Kubelka-Monk function. The PL peaks of Sm3+ ions are due to the intra 4-f orbital transitions (4G5/2Ã 6H5/2, 4G5/2Ã 6H7/2, 4G5/2Ã 6H9/2 and 4G5/2Ã 6H11/2). Among the samples, 5 mol % doped one shows the highest PL intensity under 413 nm excitation. The CIE chromaticity coordinates showed orange of red emission (CCT ~2036 K), as a result Mg2TiO3:Sm3+ (1-11 mol %) Nanophosphors were obviously for solid-state lighting and warm white light emissive display applications.
-
References
[1] S. Nakamura, T. Mukai, M.Senoh, Appl. Phys. Lett.64 (1994) 1687.https://doi.org/10.1063/1.111832.
[2] R. Mueller-Mach, G.O. Mueller, M. R. Krames, T. Trottier, IEEEJ. Sel. Top. Quantum Electron.8 (2002) 339.https://doi.org/10.1109/2944.999189.
[3] S. Nakamura, G. Fasol, The Blue Laser Diode:Gan Based Light Emitters and Lasers, Springer-Verlag, Berlin, 1997.https://doi.org/10.1007/978-3-662-03462-0.
[4] A.A.Setlur, .J.Heward,Y.Gao,A.M.Srivastava,R.G.Chandran,M.V.Shankar, Chem. Mater.18 (2006) 3314.https://doi.org/10.1021/cm060898c.
[5] J. Zhang, X. Zhang, M. Gong, J. Shi, L.Yu, C.Rong, S.Lian, Mater.Lett.79 (2012) 100.https://doi.org/10.1016/j.matlet.2012.04.011.
[6] R.J. Yu, B.Deng, G.G.Zhang, Y.An, J.H.Zhang, J.Wang, J. Electrochem. Soc. 158 (2011) 255.https://doi.org/10.1149/1.3601850.
[7] H. Xiao, Z.Xia, L.Liao, J.Zhou, J.Zhuang, J. Alloys Compd. 534(2012)97.https://doi.org/10.1016/j.jallcom.2012.04.042.
[8] Y.S. Vidya , K.S. Anantharaju, H. Nagabhushana , S.C. Sharma, H.P. Nagaswarupa, S.C. Prashantha, C. Shivakumara, Danithkumar, Spectr. Act. Part A: Molec and BiomoSpectr, 135 (2015) 241–251.https://doi.org/10.1016/j.saa.2014.06.151.
[9] G.P. Darshan ,H.B. Premkumarc, H. Nagabhushana , S.C. Sharma, S.C. Prashanth, B. Daruka Prasad, J. Coll Inter Scie, 464 (2016) 206–218.https://doi.org/10.1016/j.jcis.2015.11.025.
[10] P.K. Jisha a, RamachandraNaik , S.C. Prashantha , H. Nagabhushana , S.C. Sharma, H.P. Nagaswarupa , K.S. Anantharaju, B. Daruka Prasad , H.B Premkumar, J. Lumin, 163 (2015) 47-54.
[11] S. Park, J. Lumin.132 (2012) 875-1088.https://doi.org/10.1016/j.jlumin.2011.12.003.
[12] H. Nagabhushana, D.V. Sunitha, S.C. Sharma, S.C. Prashantha, B.M. Nagabhushana, R.P.S. Chakradhar, J. Alloy Compd. 616 (2014) 284-292.https://doi.org/10.1016/j.jallcom.2014.05.228.
[13] K. Swapna, Sk. Mahamuda A. SrinivasaRao T. Sasikala L. Rama Moorthy, J. Lumin.146 (2014) 288–294.https://doi.org/10.1016/j.jlumin.2013.09.035.
[14] Jing Zhang Abu Zayed Mohammad Saliqur Rahman, Yuxiao Li, Jing Yang, Bozhen Zhao, Eryang Lu, Peng Zhang, Xingzhong Cao, Runsheng Yu, Baoyi Wang, opt. matr. 36 (2013) 471-475.
[15] T. Sheng, Z. Fu, X. Wang, S. Zhou, S. Zhang, Z. Dai, J. Phys. Chem. C 116 (2012) 195-197.https://doi.org/10.1021/jp306935k.
[16] Zhang, R. Hu, Q. Qin, D.Wang, B. Liu, Y.Wen, M. Zhou, Y. Wang, J. Lumin.132 (2012) 2590-2594. https://doi.org/10.1016/j.jlumin.2012.05.027.
[17] Liurong Shi, Jiachi Zhang Huihui Li, PengfeiFeng, Xue Liu, Zhongqiu Fu, Yuhua Wang, J. Alloys compd. 579 (2013) 82–85https://doi.org/10.1016/j.jallcom.2013.05.056.
[18] Zhongfei Mu, Yihua Hu, Li Chen, Xiaojuan Wang, GuifangJu, Zhongfu Yang, YahongJin, J. Lumin. 146 (2014) 33-36https://doi.org/10.1016/j.jlumin.2013.09.043.
[19] Q. Zeng, H.B. Liang, Z.F. Tian, H.H. Lin, Q. Su, Chin. J. Inorg. Chem. 24 (2008) 333-342.
[20] Ruijin Yu, HyeonMi Noh, ByungKee Moon, Byung Chun Choi, Jung Hyun Jeong, Ho Sueb Lee , Kiwan Jang, Soung Soo Yi, J.lumin 145(2014)717–722https://doi.org/10.1016/j.jlumin.2013.08.049.
[21] G.S.R. Raju, S. Buddhudu, Spectrochim. Acta, Part A 70 (2008) 601-605. https://doi.org/10.1016/j.saa.2007.08.004.
[22] V. Singh, S. Watanabe, T.K.G. Rao, J.F.D. Chubaci, H.Y. Kwak, J. Non-cryst. Solids 356 (2010) 1185-1190. https://doi.org/10.1016/j.jnoncrysol.2010.03.007.
[23] Z. Wang, P. Li, Z. Yang, Q. Guo, J. Lumin.132 (2012) 1944-1948.https://doi.org/10.1016/j.jlumin.2012.03.022.
[24] G. Blasse, Philips Res. Rep. 24 (1969)131–144.
[25] S. Shi, M. Hossu, R. Hall, W. Chen, J. Mater Chem. 22 (2012) 23461-23467.https://doi.org/10.1039/c2jm34950g.
[26] S. Som, P. Mitra, Vijay Kumar, Vinod Kumar, J.J. Terblans, H.C. Swart, S.K. Sharma, Dalton Trans. 43 (2014) 9860-9871.https://doi.org/10.1039/C4DT00349G.
[27] B. Devakumar, P. Halappa, C. Shivakumara, Dye Pigm.137 (2017) 244-255.https://doi.org/10.1016/j.dyepig.2016.10.016.
[28] Z. Mu, Y. Hu, L. Chen, X. Wang, G. Ju, Z. Yang, Y. Jin, J. Lumin. 46(2014) 33–36.https://doi.org/10.1016/j.jlumin.2013.09.043.
[29] Som S, Das S, Dutta S, Visser HG, Pandey MK, Kumar P, Dubey RK and Sharma S K, RSC Adv. 5(2015) 70887–98.
[30] J. Li, J.G. Li, S. Liu, X. Li , X. Sun, Y. Sakka, Sci. Technol. Adv. Mater.14 (2013) 054201-054210.https://doi.org/10.1088/1468-6996/14/5/054201.
[31] Q.L. Dai, H.W. Song, M.Y. Wang, X. Bai, B. Dong, R.F. Qin, X.S. Qu, H. Zhang, J. Phys. Chem. C 112 (2008) 19399-19404.https://doi.org/10.1021/jp808343f.
[32] S.K. Gupta, N. Pathak, S.K. Thulasidas, V. Natarajan, J. Lumin.69 (2016) 669–673.https://doi.org/10.1016/j.jlumin.2014.10.009.
[33] Z. Mu, Y. Hu, L. Chen, X. Wang, G. Ju, Z. Yang, Y. Jin, J. Lumin. 46(2014) 33–36.https://doi.org/10.1016/j.jlumin.2013.09.043.
[34] W.T. Carnall, P. R. Fields, K. Rajnak, J. chem. Phys 49 (1968) 4412-4423.https://doi.org/10.1063/1.1669892.
[35] S. Som, Subrata Das, S. Dutta, Hendrik G. Visser, Mukesh Kumar Pandey, Pushpendra Kumar, Ritesh Kumar Dubey and S. K. Sharma, RSC Adv. 5 (2015) 70887- 70898https://doi.org/10.1039/C5RA13247A.
[36] A. Agarwal, I. Pal, S. Sanghi, M.P. Aggarwal, Opt. Mater. 32 (2009) 339- 344https://doi.org/10.1016/j.optmat.2009.08.012.
[37] Zhang Jian, YIN Jing, LIU Panpan, GAO Bin, BIE Lijian, J. Rare Earth, 30 (2012) 1009.https://doi.org/10.1016/S1002-0721(12)60170-7.
[38] K.M. Girish, Ramachandra Naik, S.C. Prashantha, H. Nagabhushana, H.P. Nagaswarupa, K.S. AnanthaRaju, H.B. Premkumar, S.C. Sharma, B.M. Nagabhushana, Spectr Act Part A: Molec and BiomoSpectr, 138 (2015) 857-865.https://doi.org/10.1016/j.saa.2014.10.097.
[39] C. Shivakumara, R. Saraf, P. Halappa, Dye Pigm.126 (2016) 154-164.https://doi.org/10.1016/j.dyepig.2015.10.032.
[40] J.B. Prasannakumar, G. Ramgopal, Y.S. Vidya, K.S. Anantharaju, B. Daruka Prasad, S.C. Sharma, S.C. Prashantha, H.B. Premkumar, H. Nagabhushana, Spectr Act Part A: Molec and BiomoSpectr, 141 (2015) 149-160.
[41] R.C. Aguielera, Z. Han, Y. Cai, L.C. Kimerling, J. Michel, Appl. Phys. Lett.102 (2013) 152106.https://doi.org/10.1063/1.4802199.
-
Downloads
-
How to Cite
Thammanna, B., & Kumar, D. V. S. (2018). Facile synthesis, structural and luminescence studies of MgTiO3:Sm3+ nanophosphor for display applications. International Journal of Engineering & Technology, 7(4), 2917-2921. https://doi.org/10.14419/ijet.v7i4.21512Received date: 2018-11-25
Accepted date: 2018-11-25