Temperature Field and Residual Stress of Butt Welding for IN182 Plate

  • Authors

    • Harinadh Vemanaboina
    • G. Janardhana Raju
    • Bura Sreenivas
    2018-10-02
    https://doi.org/10.14419/ijet.v7i4.10.20713
  • GTAW welding process, Heat flux, FEA, Transientanalysis, Residual stress.
  • The welding process is a nonlinear phenomenon in nature which leads to deformation and residual stresses in weldments. To overcome the structural changes in the weldments the computational packages can be effectively used for analyzing the changes in its life. Inconel superalloys have excellent mechanical properties and are used in the industrial applications. The present simulation is carried out for single pass butt-joint. Simulation studies are used for effective selection of process parameters for improving mechanical properties in the weld structures. In this work, coupled thermo-mechanical simulation process was carried out for predicting the temperatures, distortion and residual stress distribution in the weldments using Finite element analysis at the transverse direction on the welded surface.

     

     

  • References

    1. [1] Jang, C., Lee, J., Sung Kim, J., & Eun Jin, T. (2008). Mechanical property variation within Inconel 82/182 dissimilar metal weld between low alloy steel and 316 stainless steel. International Journal of Pressure Vessels and Piping, 85(9), 635–646. http://doi:10.1016/j.ijpvp.2007.08.004

      [2] Vemanaboina, H., Akella, S., & Buddu, R. K. (2014). Welding Process Simulation Model for Temperature and Residual Stress Analysis. Procedia Materials Science, 6, 1539–1546. https://doi:10.1016/j.mspro.2014.07.135

      [3] Akella,S., Harinadh, V., Krishna, Y., & Buddu R. K. (2014). A Welding Simulation of Dissimilar Materials SS304 and Copper. Procedia Materials Science, 5, 2440–2449. https://doi:10.1016/j.mspro.2014.07.490

      [4] Wang, W., Lu, Y., Ding, X., & Shoji, T. (2015). Microstructures and microhardness at fusion boundary of 316 stainless steel/Inconel 182 dissimilar welding. Materials Characterization, 107, 255–261. https://doi:10.1016/j.matchar.2015.07.018

      [5] Deng, D. (2013). Influence of deposition sequence on welding residual stress and deformation in an austenitic stainless steel J-groove welded joint. Materials & Design, 49, 1022–1033. https://doi:10.1016/j.matdes.2013.02.065

      [6] Murakawa, H., Deng, D., Ma, N., & Wang, J. (2012). Applications of inherent strain and interface element to simulation of welding deformation in thin plate structures. Computational Materials Science, 51(1), 43–52. https://doi:10.1016/j.commatsci.2011.06.040

      [7] Deng, D., Zhou, Y., Bi, T., & Liu, X. (2013). Experimental and numerical investigations of welding distortion induced by CO2 gas arc welding in thin-plate bead-on joints. Materials & Design (1980-2015), 52, 720–729. https://doi:10.1016/j.matdes.2013.06.013

      [8] Deng, D., & Kiyoshima, S. (2010). Numerical simulation of residual stresses induced by laser beam welding in a SUS316 stainless steel pipe with considering initial residual stress influences. Nuclear Engineering and Design, 240(4), 688–696. https://doi:10.1016/j.nucengdes.2009.11.049

      [9] Akella, S., Vemanaboina, H., & Kumar Buddu, R. (2016). Heat Flux for Welding Processes: Model for Laser Weld. Sreyas International Journal of Scientists and Technocrats, 1(1), 10–15. https://doi:10.24951/sreyasijst.org/2016011002

      [10] Cho, J. R., Lee, B. Y., Moon, Y. H., & Van Tyne, C. J. (2004). Investigation of residual stress and post weld heat treatment of multi-pass welds by finite element method and experiments. Journal of Materials Processing Technology, 155-156, 1690–1695. https://doi:10.1016/j.jmatprotec.2004.04.325

      [11] Wen, S. W., & Farrugia, D. C. J. (2001). Finite Element Modelling of Residual Stress in Pipe Welds. Strain, 37(1), 15–18. https://doi:10.1111/j.1475-1305.2001.tb01215.x http://www.ansys.stuba.sk/html/elem_55/chapter4/ES4-90.html

      Goldak, J., Chakravarti, A., & Bibby, M. (1984). A new finite element model for welding heat sources. Metallurgical Transactions B, 15(2), 299–305. https://doi:10.1007/bf02667333
  • Downloads

  • How to Cite

    Vemanaboina, H., Janardhana Raju, G., & Sreenivas, B. (2018). Temperature Field and Residual Stress of Butt Welding for IN182 Plate. International Journal of Engineering & Technology, 7(4.10), 95-98. https://doi.org/10.14419/ijet.v7i4.10.20713