Thermal Analysis Simulation for Laser Butt Welding of Inconel625 Using FEA

  • Authors

    • Harinadh Vemanaboina
    • G. Edison
    • Suresh Akella
    • Ramesh Kumar Buddu
    2018-10-02
    https://doi.org/10.14419/ijet.v7i4.10.20711
  • laser welding, moving heat source, Heat flux, FEA, transient thermal analysis.
  • Laser welding process is employed in the manufacturing of critical components where the final assembly units necessitate strict tolerances like low distortions and residual stresses. Laser beam welding offers several advantages like low heat input, very narrow heat affected zone, low residual stresses, low distortions and good mechanical joint properties in the weld joints when compared to the conventional techniques like Tungsten Inert Gas Arc welding processes. However, the implementation of laser beam welding holds certain challenges like process parameters optimization, experimental set-up and handling and expensive costs. In order to minimize the complex experimental process, simulation techniques using Finite Element Methods (FEM) are employed in order to estimate the heat input and weld process optimization prior to the experiments. This greatly helps in the optimization and estimation of the incurred stresses and distortions with the adapted weld process with known input weld process parameters. The present work reports the Gaussian heat source model for the laser welding of Inconel 625 Alloy plates. The developed moving heat source model is presented and demonstrated with the thermal profiles in terms of the thermal histogram, temperature profiles in the joint cross sections through welded region, interface across the joints.

     

     

  • References

    1. [1] E. Armentani, et al, (2007)The effect of thermal properties and weld efficiency on residual stresses in welding, journal of Achievements in Materials and Manufacturing Engineering, 20(1),319-322.

      [2] Murakawa, H., Deng, D., Ma, N., & Wang, J. (2012). Applications of inherent strain and interface element to simulation of welding deformation in thin plate structures. Computational Materials Science, 51(1), 43–52. https://doi:10.1016/j.commatsci.2011.06.040

      [3] Vemanaboina, H., Akella, S., & Buddu, R. K. (2014). Welding Process Simulation Model for Temperature and Residual Stress Analysis. Procedia Materials Science, 6, 1539–1546. https://doi:10.1016/j.mspro.2014.07.135

      [4] Akella,S., Harinadh, V., Krishna, Y., & Buddu R. K. (2014). A Welding Simulation of Dissimilar Materials SS304 and Copper. Procedia Materials Science, 5, 2440–2449. https://doi:10.1016/j.mspro.2014.07.490

      [5] Venkatkumar, D., & Ravindran, D. (2016). 3D finite element simulation of temperature distribution, residual stress and distortion on 304 stainless steel plates using GTA welding. Journal of Mechanical Science and Technology, 30(1), 67–76. https://doi:10.1007/s12206-015-1208-5

      [6] Deng, D., & Kiyoshima, S. (2010). Numerical simulation of residual stresses induced by laser beam welding in a SUS316 stainless steel pipe with considering initial residual stress influences. Nuclear Engineering and Design, 240(4), 688–696. https://doi:10.1016/j.nucengdes.2009.11.049

      [7] Kazemi, K., & Goldak, J. A. (2009). Numerical simulation of laser full penetration welding. Computational Materials Science, 44(3), 841–849. https://doi:10.1016/j.commatsci.2008.01.002

      [8] Teixeira, P. R. de F., de Araújo, D. B., & da Cunha, L. A. B. (2014). Study of the gaussian distribution heat source model applied to numerical thermal simulations of TIG welding processes. Ciência & Engenharia, 23(1), 115–122. https://doi:10.14393/19834071.2014.26140

      [9] De, A., Maiti, S. K., Walsh, C. A., & Bhadeshia, H. K. D. H. (2003). Finite element simulation of laser spot welding. Science and Technology of Welding and Joining, 8(5), 377–384. https://doi:10.1179/136217103225005570

      [10] Karlsson, L., & Goldak, J. (2014). Computational Welding Mechanics. Encyclopedia of Thermal Stresses, 630–637. https://doi:10.1007/978-94-007-2739-7_437

  • Downloads

  • How to Cite

    Vemanaboina, H., Edison, G., Akella, S., & Kumar Buddu, R. (2018). Thermal Analysis Simulation for Laser Butt Welding of Inconel625 Using FEA. International Journal of Engineering & Technology, 7(4.10), 85-89. https://doi.org/10.14419/ijet.v7i4.10.20711