Study of the permittivity, permeability and microwave attenuation of zinc ferrites nanoparticles prepared by sol-gel methods

 
 
 
  • Abstract
  • Keywords
  • References
  • PDF
  • Abstract


    Zinc ferrite nanoparticles is synthesized by the sol-gel method from Zn (NO3)2.6H2O and Fe (NO3)3.9H2O by using molar concentrations (0.2M and 0.4M), and all samples were sintered at temperatures (600 °C, 800°C and 1000 ) for two hours. X-ray diffraction patterns reveal the presence nanoparticles of cubic spinel phase of zinc ferrite structure with a mix of other phases are a hexagonal hematite type of α-Fe2O3 and the hexagonal wurtzite structure of ZnO. Morphology characteristic has been examined by using the scanning Probe Microscope and shown the grain size is increasing when the molar concentration increases probably due to the large radius of zinc ions than . Complex permeability, complex permittivity, and attenuation of zinc ferrite composite are investigated in X-band frequency. The real part of magnetic permeability decreases with increasing frequency because the external field changes rapidly at high frequency and the Magnetic loss is very low due to reduce the eddy current. The real and imaginary parts of the permittivity remains nearly constant and low values with increasing frequency for concentrations 0.2M and 0.4M at sintering temperature 600℃. The constant values for real part of permittivity means there was a dominant one type of polarization. The low values of imaginary part of permittivity may be due to decrease of dipole polarization. The best desired absorbance and attenuation of microwave can be achieved at the low values of the sintering temperature (600 ) for two concentration where the reflectivity of the waves at the minimum value.

     

     

     

  • Keywords


    Ferrites; Permittivity; Permeability; Microwave Absorber.

  • References


      [1] Y. Liu, S. C. Wei, Y. J. Wang, H. L. Tian, H. Tong, and B. S. Xu, “Characterization of (Mg, La) substituted Ni-Zn Spinel Ferrite”, Physics Procedia, vol. 50, pp. 43-47, 2013. https://doi.org/10.1016/j.phpro.2013.11.009.

      [2] Y. Hwang,” Microwave Absorbing Properties of NiZn-Ferrite synthesized from Waste Iron Oxide Catalyst”, Materials latters, vol. 60, pp. 3277-3280,2006. https://doi.org/10.1016/j.matlet.2006.03.010.

      [3] L. H. Gul, W. Ahmed, A. Maqsood,” Electrical and Magnetic Characterization of Nnanocrystalline Ni–Zn Ferrite Synthesis by Co-Precipitation Route”, Journal of Magnetism and Magnetic Materials, vol. 320, pp. 270-275, 2008. https://doi.org/10.1016/j.jmmm.2007.05.032.

      [4] L. D. Tung, V. Kolesnichenko, G. Caruntu, D. Caruntu, Y. Remond, V. O. Golub, C. J. O. Connor, L. Spinu,”Annealing effects on the Magnetic properties of nanocrystalline Zinc Ferrite”, Physica B:Condensed Matter, vol. 319, pp.116-121,2002. https://doi.org/10.1016/S0921-4526(02)01114-6.

      [5] I. V. Kasiviswanath, Y. L. N. Murthy, K. Tata, R. Singh,”Synthesis and Characterize of nano Ferrites by Citrate Gel Methods”, International Journal of Chemical Sciences, vol.11,pp. 64-72,2013. http://www.tsijournals.com/articles/synthesis-and-characterization-of-nanoferrites-by-citrate-gel-method.pdf.

      [6] L. Gunther,” Quantum tunneling of magnetization”, Physics World, vol. 3, pp.28, 1990. https://doi.org/10.1088/2058-7058/3/12/21.

      [7] I. Zalite, G. Heidemane, A. Krumina, D. Rasmane, M. Maiorov,” ZnFe2O4 Containing Nanoparticles: Synthesis and Magnetic Properties”, Materials Sciences & Applied Chemistry, vol. 34,pp. 38-44, 2017. https://doi.org/10.1515/msac-2017-0006.

      [8] A. C. F. M. Costa, E. Tortella, M. R. Morelli, R. H. A. Kiminami,” Synthesis, microstructure and magnetic properties of Ni–Zn ferrites”, Journal of Magnetism and magnetic Materials, vol. 256, pp. 174-182, 2003. https://doi.org/10.1016/S0304-8853(02)00449-3.

      [9] P. Priyadharsini, A. Pradeep, G. Chandrasekaran,” Novel combustion route of synthesis and characterization of nanocrystalline mixed ferrites of Ni–Zn “, Journal of Magnetism and magnetic Materials, vol. 321, pp. 1898-1903, 2009. https://doi.org/10.1016/j.jmmm.2008.12.005.

      [10] H. Sharma, S. Jain, P. M. Raj, K. P. Murali, R. Tummala,” Magnetic and Dielectric Property Studies in Fe- and NiFe-Based Polymer Nanocomposites”,Journal of Electronic Materials, vol. 44, pp. 3819-3826, 2015. https://doi.org/10.1007/s11664-015-3801-x.

      [11] T. A. S. Ferreira, J. C. Waerenborgh, M. H. R. M. Mendonca, M. R. Nunes, F. M. Coasta,” Structural and morphological characterization of FeCo2O4 and CoFe2O4 spinels prepared by a coprecipitation method”, Solid State Science, vol. 5, pp. 383-392, 2003. https://doi.org/10.1016/S1293-2558(03)00011-6.

      [12] N. Millot, S. LeGallet, D. Aymes, F. Bemard, Y. Grin,”Spark plasma sintering of cobalt ferrite nanopowders prepared by coprecipitation and hydrothermal synthesis”, Journal of the European Ceramic Society,vol.27, pp.921-926, 2007. https://doi.org/10.1016/j.jeurceramsoc.2006.04.139.

      [13] S. I. Abbas, H. T. John, A. J. Fraih,” Preparation of Nano Crystalline Zinc –Ferrite as Material for Micro Waves Absorption by Sol-Gel Methods”, Indian Journal of Sciences & Technology, vol.10,2017. https://doi.org/10.17485/ijst/2017/v10i21/113197.

      [14] C. G. Anchieta, A. Cancelier, M. A. Mazutti, S. L. Jahn, R. C. Kuhn, A. Gundel, O. C. Filho, E. L. Foltto,” Effects of Solvent Diols on the Synthesis of ZnFe2O4 Particles and Their Use as Heterogeneous Photo-Fenton”, Catalysts Materials, vol. 7, pp. 6281-6290, 2017. https://doi.org/10.3390/ma7096281.

      [15] C. B. R. Jesus, E. C. Mendonca, L. S. Silva, W. S. D. Folly, C. T. Meneses, J. G. S. Duque,” Weak ferromagnetic component on the bulk ZnFe2O4 compound”, Journal of Magnetism &Magnetic Materils, vol. 350 pp. 47-49, 2014. https://doi.org/10.1016/j.jmmm.2013.09.025.

      [16] I. Mohai, J. Szépvölgyi, I. Bertóti, M. Mohai, J. Gubicza, T. Ungár,” Thermal plasma synthesis of zinc ferrite nanopowder”, Solid State Ion, Vol. 141, pp. 163-168, 2001. https://doi.org/10.1016/S0167-2738(01)00770-6.

      [17] A. Simona, P. Vlazan, S. Novaconi, I. Grozescu, P.V. Notingher,” Electromagnetic behavior of zinc ferrites obtained by a co-precipitation technique”, U. P. B. Sci. Bull., Series C, vol. 73, 2011. https://www.researchgate.net/publication/265523408.

      [18] W.W. Jie, Z. C. Guang, J. Q. Jie,” Fabrication and performance optimization of Mn-Zn ferrite/EPcomposites as microwave absorbing materials”, Chin. Phys. B, vol. 22, 2013. https://doi.org/10.1088/1674-1056/22/12/128101.

      [19] V. Y. Liao,” Modern Microwave Technology”, Ellis Horwood Limited, New York, 1987.

      [20] L. F. Chen, C. Ong, C. Neo,” Microwave Electronics Measurement and Materials Characterization”, John Wiley & Sons, 2004. https://onlinelibrary.wiley.com/doi/book/10.1002/0470020466. https://doi.org/10.1002/0470020466.

      [21] H. Bayrakdar,” Electromagnetic propagation and Absorbing property of Ferrite-Polymer Nancomposite structure”, Progress in Electromagnetic Research M, vol. 25, pp. 269-281, 2012. https://doi.org/10.2528/PIERM12072303.

      [22] A. B. Nicolson, G. F. Ross,” Measurement of the intrinsic properties of materials by time-domain techniques”, IEEE Transaction on Instrumentation & Measurement IM, vol. 19, pp. 377-382, 1970. https://doi.org/10.1109/TIM.1970.4313932.

      [23] A. L. De paula, M. C. Rezende, J. J. Barroso,” Experimental measurements and numerical simulation of permittivity and permeability of Teflon in X band”, Journal Aerospace Technology& Management, vol. 3, pp. 59-64, 2011. https://doi.org/10.5028/jatm.2011.03019410.

      [24] Z. Z. Lazarevic, C. Jovalekic, V. N. Ivanovski, A. Recnik, A. N. Milutinovic, B. Cekic, N. Z. Romcevic,” Characterization of partially inverse spinel ZnFe2O4 with high saturation magnetization synthesized via soft mechanochemically assisted route”, Journal of physics and chemistry of solids, vol.75, pp.869-877, 2014. https://doi.org/10.1016/j.jpcs.2014.03.004.

      [25] G. Z. Shen, G. S. Cheng, Y. Cao, Z. Xu,”Preparation and microwave absorption of M type ferrite nanoparticle composites”,Materials Science –Poland, vol.28, pp.327-334, 2010. http://www.materialsscience.pwr.wroc.pl/bi/vol28no1/articles/ms_32_2009_114shen.pdf.

      [26] S. E. Jacobo, J. C. Aphesteguy, N. N. Shegoleva, G. V. Kurlyandskaya,” Structural and Magnetic Properties of Nanoparticles of NiCuZn Ferrite Prepared by the Self-Combustion Method “,Solid State Phenomena, vol.168, pp. 333-340, 2011. https://doi.org/10.4028/www.scientific.net/SSP.168-169.333.

      [27] A. Khan, M. A. Bhuiyan, G. Al-Quaderi, K. H. Maria, S. Choudhury, K. A. Hossaini, S. Aktheri, D. K. Saha,” Dielectric and Transport Properties of Zn-Substitude Cobalt Ferrites”, Journal Bangladesh Academy of Sciences, vol. 37, pp.73-82, 2013. https://doi.org/10.3329/jbas.v37i1.15683.

      [28] H. Vu, D. Nguyen, J. G. Fisher, W. Hamoon, S. Bae, H. G. Park, B. G. Park,” CuO – based sintering aids for low temperature sintering of BaFe12O19 ceramics”, Journal of Asian Ceramic Societies, vol. 1, pp.170-177, 2013. https://doi.org/10.1016/j.jascer.2013.05.002.

      [29] A. Kumar, V. Agarwala, D. Singh,” Effect of particles size of BaFe12O19 on the Microwave absorption characteristic in X-band”, Progress International Electromagnetics Research M,vol. 29, pp.223-236, 2013. https://doi.org/10.2528/PIERM13011604.

      [30] A. Mandal, D. Ghosh, A. Malas, P. Pal, C. K. Das,” Synthesis and Microwaves Absorbing properties of Cu-Doped Nickel Zinc Ferrite/Pb (Zr0.52 Ti0.48) O3 nanocomposites”, Journal of Engineering,2013. https://doi.org/10.1155/2013/391083.

      [31] S. Singhal, T. Namgyal, S. Bansal, K. Chandra,” Effect of Zn Substitution on the Magnetic properties of Cobalt Ferrite Nanoparticles Prepared Via Sol-Gel Route”, Journal Electromagnetic Analysis &Application, vol.2, pp. 376-381, 2010. https://doi.org/10.4236/jemaa.2010.26049.

      [32] S. K. Dhawan, A. Ohlan, K. Dingh,” Designing of Nano Composites of Conducting Polymers for EMI Shielding,Advances in Nanocomposites - Synthesis Advances in Nanocomposites – Synthesis”, Characterization and Industrial Applications, pp. 430-481, 2011. https://doi.org/10.5772/14752.

      [33] D. Li, Y. Feng, D. S. Pan, L. W. Jiang, Z. M. Dai, S. J. Li, Y. Wang, J. He, W. Liu, Z. D. Zhang,” Negative Imaginary Parts of Complex Permeability and Microwaves Absorption Performance of Core double –Shelled FeCo/C/ Fe2.5Cr0.5Se4 Nanocomposites”, Royal Society of Chemistry, vol.6, pp.73020-73027,2016. https://doi.org/10.1039/C6RA12772J.

      [34] U. N. Trivedi, M. C. Chhantbar, K. B. Modi, H. H. Joshi,” Frequency dependent dielectric behavior of Cadmium and Chromium Co- substituted nickel ferrite,” Indian Journal of Pure & Applied Physics, vol. 43, pp. 688-690, 2005. https://pdfs.semanticscholar.org/3c4d/b73d3016cccf4e36194c5b497701b5b673d1.pdf.

      [35] X. Qin, Y. Cheng, K. Zhou, S. Huang, X. Hui,” Microwave Absorbing Properties of W-Type Hexa ferrite Ba(MnZn)xCo2(1-x)Fe16O27”, Journal of Materials Science and Chemical Engineering, vol. 1, pp. 8-13, 2013. https://doi.org/10.4236/msce.2013.14002.

      [36] N. Chen, M. Gu,” Microstructure and Microwave Absorption Properties of Y- Substituted Ni-Zn Ferrites”, Open Journal of Metal, vol. 2, pp.37- 41, 2012. https://doi.org/10.4236/ojmetal.2012.22006.


 

View

Download

Article ID: 19985
 
DOI: 10.14419/ijet.v7i4.19985




Copyright © 2012-2015 Science Publishing Corporation Inc. All rights reserved.