Research of Operation Factors of the of Bullerjan Stove in the Program Environmentfor 3D Simulation

  • Authors

    • A. Kagramanyan
    • A. Onishchenko
    • J. Babichenko
    • A. Podoprigora
    2018-09-15
    https://doi.org/10.14419/ijet.v7i4.3.19832
  • Bullerjan stove, domestic oven, heat transfer, thermal power, 3D modeling.
  • The article is devoted to the calculation of the thermal power of the Bullerjan stove according to a preconstructed model, which is realized in the 3D modeling environment of SolidWorks 2016. The thermophysical characteristics of the processes passing through the heat pipes of the Bullerjan stove were studied in detail. In the course of the work, the values of airflow velocity and temperature distribution, the temperature distribution of a solid, the surface of the heat pipe, that in the end allowed us to obtain the values of the heat output of the oven. The obtained data made it possible to determine the value of the heat output of the oven on the mode of smoldering wood and on the mode of flaming burning. The thermal power of a Bullerjan stove and in particular, its flow simulation module for modeling the flow of liquids and gases were obtained.

     

  • References

    1. [1] Vybirayem buler'yan: plyusy i minusy [Elektronnyy re-surs]: informatsiya / Internet magazin sistem otopleniya i vodosnabzheniya «TermoUnion».– Rezhim dostupu:

      http://www.termounion.com.ua/ru/statti/vybyrajemo-bulerjan-u-lvovi. – (Data obrashcheniya: 09.04.2018).

      [2] Mikheyev M.A. Osnovy teploperedachi / M.A. Mikheyev, I.M. Mikheyeva. – 2-ye izd., ster. – M.: «Energiya», 1977. – 344 s.

      [3] Aseyeva R. M. Goreniye i pozharnaya opasnost' drevesiny / R. M. Aseyeva, B. B. Serkov, Sivenkov A. B. / Pozharovzryvo-bezopasnost'. — 2012. —№1. — st.19.

      [4] Di Blasi C. Modeling and Simulation of Combustion Processes of Charring and Non-Charring Solid Fuels // Progress in Energy and Combustion Science. — 1992. — Vol. 19. — P. 71-104.

      [5] Moghtadery B., Novozhilov V., Fletcher D., Kent J. H. An Integral Model for the Transient Pyrolysis of Solid Materials //Fire and Materials. — 1997. — Vol. 21. — P. 7-16.

      [6] Mikkola E., Wichman I. S. On the Thermal Ignition of Combustible Materials //Fire and Materials. — 1989. — Vol. 14. — P. 87-96.

      [7] White R. H., Dietenberger M. A. Fire Safety//Wood Handbook-Wood as an Engineering Material.— US Department of Agriculture, Forest Products Laboratory, 2002. — Ch. 17.

      [8] B. Mayr, R. Prieler, M. Demuth, C. Hochenauer, Modelling of high temperature furnaces under air-fuel and oxygen enriched conditions, Applied Thermal Engineering, Volume 136, 2018, Pages 492-503, https://doi.org/10.1016/j.applthermaleng.2018.03.013.

      [9] Hamid Khayyam, Seyed Mousa Fakhrhoseini, Jeffrey S. Church, Abbas S. Milani, Alireza Bab-Hadiashar, Reza N. Jazar, Minoo Naebe, Predictive modelling and optimization of carbon fiber mechanical properties through high temperature furnace, Applied Thermal Engineering, Volume 125, 2017, Pages 1539-1554, ISSN 1359-4311, https://doi.org/10.1016/j.applthermaleng.2017.06.071.

      [10] FLoEFDTM for NX Obuchaiushchie primery` Software Version 15 // Mentor Graphics, 2016.- s. 141-163.

  • Downloads

  • How to Cite

    Kagramanyan, A., Onishchenko, A., Babichenko, J., & Podoprigora, A. (2018). Research of Operation Factors of the of Bullerjan Stove in the Program Environmentfor 3D Simulation. International Journal of Engineering & Technology, 7(4.3), 350-353. https://doi.org/10.14419/ijet.v7i4.3.19832