Mechanical characterization of composites polyester moulding reinforced waste metal lathes with standard ASTM D 638-lll modification

  • Authors

    • Iswandi Idris Politeknik LP3I Medan
    • Ruri Aditya Sari Politeknik LP3I Medan
    • Hendriko . Politeknik Caltex Riau
    • Hendri Novia Syamsir Politeknik Caltex Riau
    2018-10-14
    https://doi.org/10.14419/ijet.v7i4.19764
  • Polyester Reinforce, Metal Waste, ASTM D 638-III, Mechanical Test
  • Scope and Objectives of this research are: To improve the mechanical characteristics of polyester composite fabricated waste metal lathe and Styrofoam through tensile test, compression test, impact test, obtain a new note for developing new composite materials by use waste metal lathe and plastic waste Styrofoam in order not to waste. from the test results obtained tensile strength 0.66 kg f/ mm2, greatest moment 5,490 kg f.m, greatest stress 1.93 kg f/ mm2, strain 0.17093 m/m and bending angle 167.64. The breakpoints of the composite specimen in which the waste lathe located is at 0.65, the elastic behaviour seen from the number 0 to the 1.06 proportional limit, then at the voltage level 1.1 of the plastic behaviour and the 1.633 level has undergone plastic deformation until the breakpoints.

    The charphy impact implies 110 (J / mm 2). From the experimental results showed that the composite fabric waste has good mechanical properties.

     

     

  • References

    1. [1] D. D. L. Chung, Composite Materials, vol. 22, no. 2. 2010.

      [2] P. A. Nugroho, Mustaqim, and Rusnoto, “Analisa Sifat Mekanik Komposit Serat Tebu dengan Matrik Resin Epoxy,†J. Eng. - FT. Univ. Pancasakti Tegal, vol. 4, no. 1, pp. 56–64, 2012.

      [3] T. Sathishkumar, P. Navaneethakrishnan, S. Shankar, R. Rajasekar, and N. Rajini, “Characterization of natural fiber and composites - A review,†J. Reinf. Plast. Compos., vol. 32, no. 19, pp. 1457–1476, 2013. https://doi.org/10.1177/0731684413495322.

      [4] H. Takagi and T. Fujii, “Mechanical Characterization of Bamboo Fiber-Reinforced Green Composites,†Key Eng. Mater., vol. 577–578, pp. 81–84, 2013. https://doi.org/10.4028/www.scientific.net/KEM.577-578.81.

      [5] N. Razali, M. T. H. Sultan, F. Mustapha, N. Yidris, and M. R. Ishak, “Impact Damage on Composite Structures – A Review,†Int. J. Eng. Sci., pp. 2319–1813, 2014.

      [6] X. Sun, H. Sun, H. Li, and H. Peng, “Developing polymer composite materials: Carbon nanotubes or graphene?,†Advanced Materials, vol. 25, no. 37. pp. 5153–5176, 2013. https://doi.org/10.1002/adma.201301926.

      [7] K. K. Chawla, Composite Materials. 2012.

      [8] C. Bathias, “Fatigue of composite materials,†in Fatigue of Materials and Structures: Application to Damage and Design, 2013, pp. 179–204.

      [9] B. Winther-Jensen, K. Fraser, C. Ong, M. Forsyth, and D. R. MacFarlane, “Conducting polymer composite materials for hydrogen generation,†Adv. Mater., vol. 22, no. 15, pp. 1727–1730, 2010. https://doi.org/10.1002/adma.200902934.

      [10] J. Low, S. Cao, J. Yu, and S. Wageh, “Two-dimensional layered composite photocatalysts,†Chem. Commun., vol. 50, no. 74, p. 10768, 2014. https://doi.org/10.1039/C4CC02553A.

      [11] H. Wei and H. Xu, “Plasmonics in composite nanostructures,†Materials Today, vol. 17, no. 8. pp. 372–380, 2014. https://doi.org/10.1016/j.mattod.2014.05.012.

      [12] C. Varin, N. Reid, and D. Firth, “An overview of composite likelihood methods,†Stat. Sin., vol. 21, pp. 5--42, 2011.

      [13] J. L. Ferracane, “Resin composite—State of the art,†Dent. Mater., vol. 27, no. 1, pp. 29–38, 2011. https://doi.org/10.1016/j.dental.2010.10.020.

      [14] J. Aboudi, S. Arnold, and B. Bednarcyk, Micromechanics of Composite Materials. 2013.

      [15] A. Atiqah, M. A. Maleque, M. Jawaid, and M. Iqbal, “Development of kenaf-glass reinforced unsaturated polyester hybrid composite for structural applications,†Compos. Part B Eng.,

      [16] Y. Yang, R. Boom, B. Irion, D. J. van Heerden, P. Kuiper, and H. de Wit, “Recycling of composite materials,†Chem. Eng. Process. Process Intensif., vol. 51, pp. 53–68, 2012. https://doi.org/10.1016/j.cep.2011.09.007.

      [17] K. K. Chawla, Composite materials. 2013.

      [18] J. Yang and H. Liu, Metal-based composite nanomaterials. 2015.

      [19] E.-H. Kim, M.-S. Rim, I. Lee, and T.-K. Hwang, “Composite damage model based on continuum damage mechanics and low velocity impact analysis of composite plates,†Compos. Struct., vol. 95, pp. 123–134, 2013. https://doi.org/10.1016/j.compstruct.2012.07.002.

      [20] B. Arash, Q. Wang, and V. K. Varadan, “Mechanical properties of carbon nanotube/polymer composites.,†Sci. Rep., vol. 4, p.6479, 2014. https://doi.org/10.1038/srep06479.

      [21] N. Guermazi, N. Haddar, K. Elleuch, and H. F. Ayedi, “Investigations on the fabrication and the characterization of glass/epoxy, carbon/epoxy and hybrid composites used in the reinforcement and the repair of aeronautic structures,†Mater. Des., vol. 56, pp. 714–724, 2014. https://doi.org/10.1016/j.matdes.2013.11.043.

      [22] S. Gholizadeh, “A review of non-destructive testing methods of composite materials,†Procedia Struct. Integr., vol. 1, pp. 50–57, 2016. https://doi.org/10.1016/j.prostr.2016.02.008.

      [23] G. Oliveira, M. Carolina, A. Teles, F. Perissé, D. Lopes, C. Maurício, F. Vieira, F. Muylaert, M. De Almeida, and S. Neves, “Tensile strength of polyester composites reinforced with PALF,†J. Mater. Res. Technol., vol. 298, no. x x, pp. 6–10, 2017.

      [24] A. Lisdiana, A. D. Rosalia, N. J. Asrilya, and R. N. Latifah, “Utilization of Metal Lathe Waste as Material for the Absorption of Electromagnetic Radiation Based Orgonite,†Int’l J. Adv. Agric. Environ. Engg., vol. 1, no. 1, pp. 57–60, 2014.

      [25] M. Ravandi, W. S. Teo, L. Q. N. Tran, M. S. Yong, and T. E. Tay, “Mode i interlaminar fracture toughness of natural fiber stitched flax/epoxy composite laminates-Experimental and numerical.

      [26] ASTM International, “Standard Test Method for Tensile Properties of Plastics 1,†ASTM Int., no. January, pp. 1–16, 2003.

      [27] H. N. S. Iswandi Idris, Ruri Aditya Sari, Hendriko, “Manufacturing Process For Composite Reinforce Waste Lathe With Standard ASTM D 638-III,†JOJAPS, vol. 10, no. 53, pp. 3–8, 2017.

  • Downloads

  • How to Cite

    Idris, I., Aditya Sari, R., ., H., & Novia Syamsir, H. (2018). Mechanical characterization of composites polyester moulding reinforced waste metal lathes with standard ASTM D 638-lll modification. International Journal of Engineering & Technology, 7(4), 4754-4756. https://doi.org/10.14419/ijet.v7i4.19764