Simulation of Loads on the Carrying Structure of an Articulated Flat Car in Combined Transportation
DOI:
https://doi.org/10.14419/ijet.v7i4.3.19724Published:
2018-09-15Keywords:
Articulated Flat car, Carrying Structure, Combined Transportation, Dynamics, Strength.Abstract
The article presents the findings of the research into loading on the carrying structure of an articulated flat car under combined transportation. The refined data of dynamic loads on the carrying structure of a flat car under train ferry transportation, as well as the main loading modes in rail track operation were determined by mathematical modeling. The adequacy of the models developed was checked with an F-test. The results of the calculation conducted made it possible to conclude that the hypothesis on adequacy of the models is not rejected. The peculiarities of the structural strength modeling for a flat car within operational loading diagrams are given. The graphics works were conducted in Solid Works. The capacity analysis was conducted by the finite element method in CosmosWorks. The 09G2S steel was used as a construction material. It is determined that the maximum equivalent loads in the flat car support structure do not exceed the admissible loads. Results of the research can be used in designing coupled flat cars to provide their capacity at mixed transportation.
References
[1] Krason W, Niezgoda T, “Fe numerical tests of railway car for intermodal transport according to PN-EU standardsâ€, Bulletin of the Polish Academy of Sciences Technical Sciences, Vol. 62, No.4, (2014), pp. 843 – 851.
[2] Fomin O, “Improvement of upper bundling of side wall of gondola cars of 12-9745 modelâ€, Scientific and technical journal «Metallurgical and Mining Industry», No.1, (2015), pp. 45 – 48.
[3] Kelrykh М, Fomin O, “Perspective directions of planning carrying systems of gondolasâ€, Scientific and technical journal «Metallurgical and Mining Industry», No.6, (2014), pp. 64 – 67.
[4] Chlus K, Krason W, “Numerical standard tests of railway carriage platformâ€, Journal of KONES Powertrain and Transport, Vol. 19, No.3, (2012), pp. 59 – 64.
[5] Nader M, Sala M, Korzeb J, Kostrzewski J, “Kolejowy car transportowy jako nowatorskie, innowacyjne rozwiÄ…zanie konstrukcyjne do przewozu naczep siodÅ‚owych i zestawów drogowych dla transportu intermodalnegoâ€, Logistyka, No.4, (2014), pp. 2272 – 2279.
[6] Kozhokar KV, “Osobennosti razrabotki skorostnogo sochlenennogo vagona-platformyi dlya perevozki konteynerovâ€, Transport Rossiyskoy Federatsii, No.3, (2013), pp. 21–24, (In Russian).
[7] Bondarenko AI, Panin AYu, “Teoreticheskaya i eksperimentalnaya otsenka prochnosti vagona-platformyi dlya perevozki avtomobilnyih polupritsepovâ€, Transport Rossiyskoy Federatsii, No.3, (2014), pp.33–35, (In Russian).
[8] Lysikov N, Kovalev R, Mikheev G, “Stress load and durability analysis of railway vehicles using multibody approachâ€, Transport problems, Vol. 2, No.3, (2007), pp. 49 – 56.
[9] WBN Waggonbau Niesky GmbH: Developing a flexible platform of freight cars, Intern. Edition, No.1, pp. 46.
[10] Switching over to the home platform, J. for partners Transmashholding, No. 3, (2015), pp. 22 – 23.
[11] Niezgoda T, KrasoÅ„ W, Stankiewicz M, “Simulations of motion of prototype railway car with rotatable loading floor carried out in MSC Adams software, J. of KONESâ€, Powertrain and Transport, Vol. 19, No.4, (2015), pp. 495–502.
[12] Lovska AO, “Udoskonalennya nesuchoyi konstruktsiyi vagona-platformi dlya pidvischennya efektivnosti konteynernih perevezenâ€, Nauka ta progres transportu. Visnik Dnipropetrovskogo natsionalnogo universitetu zaliznichnogo transportu, No.1 (67), (2017), pp. 168 – 183, (In Ukranian).
[13] Lovska AO, “Doslidzhennya dinamichnoyi navanta-zhenosti vagona-platformi z konteynerami pri perevezenni na zaliznichnomu poromiâ€, Zaliznichniy transport Ukrayini, No.2, (2017), pp.16 – 20, (In Ukranian).
[14] Lovska AO, “Viznachennya navantazhenosti kon-teyneriv u skladi kombinovanih poyizdiv pri perevezenni zaliznichnim poromomâ€, Nauka ta progres transportu. Visnik Dnipropetrovskogo natsionalnogo universitetu zaliznichnogo transportu, No.6 (72), (2017), pp. 49 – 60, (In Ukranian).
[15] Dyakonov V. MATHCAD 8/2000: spetsialnyiy spravochnik, SPb: Piter, (2000), pp: 392-411.
[16] Kiryanov DV, Mathcad 13, SPb.: BHV – Peterburg, (2006), pp: 254-308.
[17] Shadur LA, Koturanov VI, Hohlov AA, Anisimov PS, Konstruirovanie i raschet vagonov, Moskva: UMK MPS Rossii, (2000), pp: 521-531.
[18] Vagonyi gruzovyie. Trebovaniya k prochnosti i dinamiche-skim kachestvam. GOST 33211-2014, M.: Standartinform, (2016), pp: 30-54.
[19] Bogomaz GI, Mehov DD, Pilipchenko OP, Chernomashentseva YuG, “Nagruzhennost konteynerov-tsistern, raspolozhennyih na zheleznodorozhnoy platforme, pri udarah v avtostsepkuâ€, Zb. nauk. prats “Dinamika ta keruvannya ruhom mehanichnih sistemâ€. 1992, pp. 87 – 95, (In Russian).
How to Cite
License
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution Licensethat allows others to share the work with an acknowledgement of the work''s authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal''s published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Accepted 2018-09-16
Published 2018-09-15