Bio sorption of hexavalent chromium using biomass of microalgae scenedesmus SP

  • Authors

    • Debabrata Pradhan
    • Niharbala Devi
    • Lala Behari Sukla
    https://doi.org/10.14419/ijet.v7i3.29.19311
  • Bio Sorption, Scenedesmus, Functional Group, Adsorption Parameters, Hexavalent Chromium.
  • Hexavalent chromium (Cr (VI)) is a toxic metal ion present in the water environment. The water samples collected from different points of the seepages of Sukinda Chromite mines are of Odisha, India were found to be high content of Cr (VI). Therefore, its biosorption onto the biomass of microalgae Scenedesmus sp. was examined in this study. The biomass of microalgae was generated using a raceway pond specially designed for their growth. Different biosorption parameters, such as initial pH, contact time, initial Cr (VI) concentration, biosorbent dosage, particle size distribution of the microalgae biomass and temperature, were found to affect the Cr (VI) loading onto the biomass. The maximum biosorption efficiency of Cr (VI) was found to be 93.1% at an optimum condition of contact time, 120min; Cr (VI), 10mg.L-1; solid-liquid ratio, 10%(w/v); pH, 1.0; temperature, 30oC; particle size, -75+45μm; stirring, 300rpm. The presence of different functional groups, such as amides, acids, aldehydes, and halides, confirmed by the FTIR analysis technique were the reason for the high uptake of metals.

     

     


     
  • References

    1. [1] Kimbrough, D.E., Cohen, Y., Winer, A.M., Creelman, L., Mabuni, C., 1999. A critical assessment of chromium in the environment. Crit. Rev. Env. Sci. Technol. 29, 1-46.

      [2] Pradhan, D., Sukla, L.B., Sawyer, M., Rahman, P.K.S.M., 2017. Recent bioreduction of hexavalent chromium in wastewater treatment: A review. J. Ind. Eng. Chem. 55, 1-20.

      [3] Bielicka, A., Bojanowska, I., Wiśniewski, A., 2005. Two faces of chromium-pollutant and bioelement. Pol. J. Environ. Stud.14, 5-10.

      [4] Dhal, B., Thatoi, H.N., Das, N.N., Pandey, B.D., 2013. Chemical and microbial remediation of hexavalent chromium from contaminated soil and mining/metallurgical solid waste: A review. J Hazard. Mater. 250-251, 272-291.

      [5] Gheju, M., 2011. Hexavalent chromium reduction with zero-valent iron (ZVI) in aquatic systems. Water, Air, Soil Pollut.222, 103-148.

      [6] Tseng, C.H., Lei, C., Chen, Y.C., 2018. Evaluating the health costs of oral hexavalent chromium exposure from water pollution: A case study in Taiwan. J. Clean. Prod.172, 819-826.

      [7] A report on the water quality with regards to presence of hexavalent chromium in Damsala Nala of Sukinda mining area, prepared by EPG, Odisha, 2016.

      [8] Han, L., Mao, D., Huang, Y., Zheng, L., Yuan, Y., Su, Y., Sun, S., Fang, D., 2017. Fabrication of unique Tin (IV) Sulfide/Graphene Oxide for photocatalytically treating chromium (VI)-containing wastewater. J. Clean. Prod.168, 519-525.

      [9] Pradhan, D., Panda, S., Sukla, L.B., 2018. Recent Advances in Indium Metallurgy: A Review. Mineral Processing and Extractive Metallurgy Review, 39,167-180.

      [10] Huang, D., Wang, G., Shi, Z., Li, Z., Kang, F., Liu, F., 2017. Removal of hexavalent chromium in natural groundwater using activated carbon and cast iron combined system. J. Clean. Prod., 165, 667-676.

      [11] Zhu, F., Ma, S., Liu, T., Deng, X., 2018. Green synthesis of nano zero-valent iron/Cu by green tea to remove hexavalent chromium from groundwater. J. Clean. Prod.174, 184-190.

      [12] Malaviya, P., Singh, A., 2016. Bioremediation of chromium solutions and chromium containing wastewaters. Crit. Rev. Microbiol.42, 607-633.

      [13] Dittert, I.M., Brandão, H.L., Pina, F., daSilva, E.A.B., et al., 2014. Integrated reduction/oxidation reactions and sorption processes for Cr (VI) removal from aqueous solutions using Laminaria digitata macro-algae. Chem. Eng. J. 237, 443-454.

      [14] Kim, D.J., Pradhan, D., Chaudhury, G.R., Ahn, J.G., Lee, S.W., 2009. Bioleaching of complex sulfides concentrate and correlation of leaching parameters using multivariate data analysis technique. Mater. Trans. 50, 2318-2322.

      [15] Liu, M., Ma, J., Lyu, B., GAO, D., Zhang, J., 2016. Enhancement of chromium uptake in tanning process of goat garment leather using nanocomposite. J. Clean. Prod.133, 487-494.

      [16] Pradhan, D., Sukla, L.B., Devi, N., Acharya, S., 2018. Geochemical Cycle of Radon and its Bioremediation Opportunity from Water Environment: A Review. Recent Patents on Biotechnology. https://doi.org/10.2174/2211550107666180501123246

      [17] Duarte, B., Silva, V., Cacador, I., 2012. Hexavalent chromium reduction, uptake and oxidative biomarkers in Halimione portulacoides. Ecotoxicol. Environ. Saf.83, 1-7.

      [18] Jena, M., Pradhan, D., Das. T., 2012. A comparative study of biosorption of Cu using Aspergillus niger and Aspergillus flavus. Int. J. Environ. Waste Manage.9, 221-231.

      [19] Pradhan, D., Kim, D.J., Chaudhury, G.R., Lee, S.W., 2010. Bio-dissolution of Ni, V and Mo from spent petroleum catalyst using iron-oxidizing bacteria. Journal of Environmental Science and Health, Part A, 45, 476-482.

      [20] Lakshmanraj, L., Gurusamy, A., Gobinath, M.B., Chandramohan, R., 2009. Studies on the biosorption of hexavalent chromium from aqueous solutions by using boiled mucilaginous seeds of Ocimum americanum. J. Hazard. Mater.169, 1141-1145.

      [21] Pradhan, D., Kim, D.J., Ahn, J.G., Lee, S.W. 2010. Microbial leaching process to recover valuable metals from spent petroleum catalyst using iron-oxidizing bacteria. WASET-International Journal of Chemical and Molecular Engineering, 4, 232-236.

      [22] Ranieri, E., Fratino, U., Petrella, A., Torretta, V., Rada, E.C., 2016. Ailanthus Altissima and Phragmites Australis for chromium removal from a contaminated soil. Environ. Sci. Pollut. Res. 23, 15983-15989.

      [23] Pradhan, D., Kim, D.J., Chaudhury G.R., Sohn, J.S., Lee, S.W., 2010. Dissolution kinetics of complex sulfides using acidophilic microorganisms. Materials Transactions, 51, 413-419.

      [24] Romanenko, V.I., Koren’kov, V.N., 1977. A pure culture of bacteria utilizing chromates and bichromates as hydrogen acceptors in growth under anaerobic conditions. Mikrobiologiya 43, 414-417.

      [25] Patra, A.K., Pradhan, D., Kim, D.J., Ahn, J.G., Yoon, H.S., 2011. Review on bioleaching of uranium from low-grade ore. Journal of Korean Institute of Resources Recycling, 20, 30-44.

      [26] Somasundaram, V., Philip, L., Bhallamudi, S.M., 2009. Experimental and mathematical modeling studies on Cr (VI) reduction by CRB, SRB and IRB, individually and in combination. J. Hazard. Mater.172, 606-617.

      [27] Pradhan, D., Kim, D.J., Ahn, J.G., Gahan, C.S., Chung, H.S., Lee, S.W., 2011. Comparison of bioleaching kinetics of spent catalyst by adapted and unadapted iron oxidizing bacteria - effect of pulp density; particle size; temperature. Korean Journal of Metals and Materials, 49, 956-966.

      [28] Mishra, A., Malik, A., 2014. Novel fungal consortium for bioremediation of metals and dyes from mixed waste stream. Bioresour. Technol. 171, 217-226.

      [29] Pradhan, D., Kim, D.J., Baik, S.B., Lee, S.W., 2011. Extraction of valuable metals from spent desulfurizing catalyst. Journal of Korean Institute of Resources Recycling, 20, 48-54.

      [30] Mandal, S., Sarkar, B., Bolan, N., Ok, Y.S., Naidu, R., 2017. Enhancement of chromate reduction in soils by surface modified biochar. J. Environ. Manage.186, 277-284.

      [31] David, D.J., Pradhan, D., Das, T., 2008. Evaluation of iron oxidation rate of Acidithiobacillus ferrooxidans in presence of heavy metal ions. Mineral Processing and Extractive Metallurgy (Trans. Inst. Min. Metall. C), 117, 56-61.

      [32] Sharma, S., Malaviya, P., 2016. Bioremediation of tannery wastewater by chromium resistant novel fungal consortium. Ecol. Eng. 91, 419-425.

      [33] Pradhan, D., Sukla, L.B., Kim, D.J., 2018. Characterization and Pretreatment of Spent Petroleum Refinery Catalyst for its Biodissolution. INGLOMAYOR, Section C, 14, 2-13.

      [34] Lara, M.A.M., deHoces, M.C., Gálvez, A.R., Muñoz, A.P., Miranda, M.C.T., 2016. Assessment of the removal mechanism of hexavalent chromium from aqueous solutions by olive stone. Water Sci. Technol. 73, 2680-2688.

      [35] Pradhan, D., Sukla, L.B., 2017. Thin film of Yttria stabilized Zirconia on NiO using vacuum cold spraying process for solid oxide fuel cell. International Journal of Nano and Biomaterials, 7, 38-47.

      [36] Mishra, A., Tripathi, B.D., Rai, A.K., 2016. Packed-bed column biosorption of chromium (VI) and nickel (II) onto Fenton modified Hydrilla verticillata dried biomass. Ecotoxicol. Environ. Saf. 132, 420-428.

      [37] Pradhan, D., Sukla, L.B., Acevedo, R., 2017. Microalgae for Future Biotechnology Industries. Inglomayor, Section C, 13, 40-55.

      [38] Zhou, L., Liu, Y., Liu, S., Yin, Y., Zeng, G., Tan, X., Hu, X., Hu, X., Jiang, L., Ding, Y., Liu, S., Huang, X., 2016. Investigation of the adsorption-reduction mechanisms of hexavalent chromium by ramie biochars of different pyrolytic temperatures. Bioresour. Technol. 218, 351-359.

      [39] Pradhan, D., Singh, S., Sukla, L.B., 2017: Microalgae for Carbon Sequestration vis-Ã -vis Bio-fuels Production. Inglomayor, Section C, 13, 56-67.

      [40] Dittert, I.M., Vilar, V.J.P., daSilva, E.A.B., deSouza, S.M.A.G.U., deSouza, A.A.U., Botelho, C.M.S., Boaventura, R.A.R., 2012. Adding value to marine macro-algae Laminaria digitata through its use in the separation and recovery of trivalent chromium ions from aqueous solution. Chem. Eng. J. 193-194, 348-357.

      [41] Dey, S., Paul, A.K., 2012. Optimization of cultural conditions for growth associated chromate reduction by Arthrobacter sp. SUK 1201 isolated from chromite mine overburden. J. Hazard. Mater. 213-214, 200-206.

      [42] Hackbarth, F.V., Maass, D., deSouza, A.A.U., Vilar, V.J.P., deSouza, S.M.A.G.U., 2016. Removal of hexavalent chromium from electroplating wastewaters using marine macroalga Pelvetia canaliculata as natural electron donor. Chem. Eng. J. 290, 477-489.

      [43] Pradhan, D., Pal, S., Sukla, L.B., Chaudhury, G.R., Das, T., 2008. Bioleaching of low-grade copper ore using indigenous microorganism. Indian J. Chem. Technol. 15, 588-592.

      [44] Sukla, L.B., Nayak, M., Jena, J., et al. 2013. Large-scale cultivation of brackish water isolates Scenedesmus sp. in raceway pond for biodiesel production, in Khanna, D.R., Chopra, A.K., Matta, G., Bhutiani, R., Singh, V. (Eds), Environmental Technology. Daya Publishing House, New Delhi, pp. 79-91.

      [45] Brim, H., McFarlan. S.C., Fredrickson. J.K., Minton, K.W., Zhai. M., Wackett, L.P., Daly, M.J., 2000. Engineering Deinococcus radiodurans for metal remediation in radioactive mixed waste environments. Nature Biotechnol. 18, 85-90.

      [46] Bertagnolli, C., daSilva, M.G.C., Guibal, E., 2014. Chromium biosorption using the residue of alginate extraction from Sargassum filipendula. Chem. Eng. J. 237, 362-371.

      [47] Davis, T.A., Volesky, B., Mucci, A., 2003. A review of the biochemistry of heavy metal biosorption by brown algae. Water Res. 37, 4311-4330.

      [48] Figueira, M.M., Volesky, B., Ciminelli, V.S.T., Roddick, F.A., 2000. Biosorption of metals in brown seaweed biomass. Water Res. 34, 196-204.

      [49] Chen, Z., Song, S., Wen, Y., 2016. Reduction of Cr (VI) into Cr (III) by organelles of Chlorella vulgaris in aqueous solution: An organelle-level attempt. Sci. Total Environ.572, 361-368.

      [50] Das, C., Naseera, K., Ram, A., Meena, R.M., Ramaiah, N., 2016. Bioremediation of tannery wastewater by a salt-tolerant strain of Chlorella vulgaris. J. Appl. Phycol.29, 235-243.

      [51] Deng, L.,Wang, H.L., Deng, N.S., 2006. Photoreduction of chromium (VI) in the presence of algae, Chlorella vulgaris. J. Hazard. Mater.138, 288-292.

      [52] Han, X., Wong, Y.S., Wong, M.H., Tam, N.F.Y., 2007. Biosorption and bioreduction of Cr (VI) by a microalgal isolate Chlorella miniata. J. Hazard. Mater.146, 65-72.

      [53] deSouza, F.B., Brandão, H.D.L., Hackbarth, F.V., deSouza, A.A.U., Boaventura, R.A.R., de Souza, S.M.A.G.U., Vilar, V.J.P., 2016. Marine macro-alga Sargassum cymosumas electron donor for hexavalent chromium reduction to trivalent state in aqueous solutions. Chem. Eng. J. 283, 903-910.

      [54] Yang, L., Chen, J.P., 2008. Biosorption of hexavalent chromium onto raw and chemically modified Sargassum sp. Bioresour. Technol. 99, 297-307.

      [55] Jayakumar, R., Rajasimman, M., Karthikeyan, C., 2014. Sorption of hexavalent chromium from aqueous solution using marine green algae Halimedagracilis: Optimization, equilibrium, kinetic, thermodynamic and desorption studies. J. Environ. Chem. Eng. 2, 1261-1274.

      [56] Basha, S., Murthy, Z.V.P., Jha, B., 2008. Biosorption of hexavalent chromium by chemically modified seaweed, Cystoseiraindica. Chem. Eng. J. 137, 480-488.

      [57] Gupta, V., Rastogi, A., 2009. Biosorption of hexavalent chromium by raw and acid-treated green alga Oedogonium hatei from aqueous solutions. J. Hazard. Mater.163, 396-402.

      [58] Saha, B., Orvig, C., 2010. Biosorbents for hexavalent chromium elimination from industrial and municipal effluents. Coord. Chem. Rev. 254, 2959-2972.

      [59] Tandukar, M., Huber, S.J., Onodera, T., Pavlostathis, S.G., 2009. Biological chromium (VI) reduction in the cathode of a microbial fuel cell. Environ. Sci. Technol. 43, 8159-8165.

      [60] Sheng, P.X., Ting, Y.P., Chen, J.P., Hong, L., 2004. Sorption of lead, copper, cadmium, zinc, and nickel by marine algal biomass: characterization of biosorptive capacity and investigation of mechanisms. J. Colloid Interface Sci. 275, 131-141.

      [61] Silverstein, R.M., Bassler, G.C., Morrill, T.C., 1981. Spectrometric Identification of Organic Compounds, fourth ed. John Wiley and Sons, New York.

      [62] Pattanaik, A., Sukla, L.B., Pradhan, D., 2018. Effect of LED Lights on the Growth of Microalgae. Inglomayor, Section C, 14, 14-24.

      [63] Maleki, A., Hayati, B., Naghizadeh, M., Joo, S.W., 2015. Adsorption of hexavalent chromium by metal organic frameworks from aqueous solution. J. Ind. Eng. Chem. 28, 211-216.

  • Downloads

  • How to Cite

    Pradhan, D., Devi, N., & Behari Sukla, L. (2018). Bio sorption of hexavalent chromium using biomass of microalgae scenedesmus SP. International Journal of Engineering & Technology, 7(3.29), 558-563. https://doi.org/10.14419/ijet.v7i3.29.19311