Performance investigation of 3z buck boost converter for renewable applications

  • Authors

    • G Kishor
    • M Harsha Vardhan Reddy
    • K Pushpalatha
    https://doi.org/10.14419/ijet.v7i3.29.19191
  • About Four Key Words or Phrases in Alphabetical Order, Separated by Commas.
  • In case of renewable generation systems like Solar, Wind and Fuel cell it is required to use DC-DC converter to increase the voltage levels to meet demand. In such case the operating efficiency of dc-dc converter plays a vital role in energy conversion generally lie in the range of 60-80 percent. In this paper a 3-Z cascaded network is proposed for the renewable energy applications operating at higher efficiency. A comparison is made between conventional dc-dc buck boost converter with the proposed 3-Z cascaded network and analyzed its performance with lighting load. Simulation analysis is also performed to validate the proposed converter behavior.

     

     

  • References

    1. [1] W. Li, J. Liu, J. Wu, and X. He, “Design and analysis of isolated ZVT boost converters for high-efficiency and high-step-up applications,†IEEE Trans. Power Electron., vol. 22, no. 6, pp. 2263–2374, Nov. 2007.

      [2] E. H. Ismail, M. A. Al-Saffar, A. J. Sabzali, and A. A. Fardoun, “A family of single-switch PWM converters with high step-up conversion ratio,†IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 55, no. 4, pp. 1159–1171, May 2008.

      [3] M. A. Al-Saffar, E. H. Ismail, and A. J. Sabzali, “Family of ZC-ZVS converters with wide voltage range for renewable energy systems,†Renew. Energy, vol. 56, pp. 32–43, Aug. 2013.

      [4] W. Y. Choi and C. G. Lee, “Photovoltaic panel integrated power conditioning system using a high efficiency step-up DC–DC converter,†Renew. Energy, vol. 41, pp. 227–234, May 2012.

      [5] J.-C. Tsai, Modified Hysteretic Current Control (MHCC) for improving transient response of boost converter,†IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 58, no. 8, pp. 1967–1979, Aug. 2011.

      [6] X. G. Feng, J. J. Liu, and F. C. Lee, “Impedance specifications for stable DC distributed power systems,†IEEE Trans. Power Electron., vol. 17, no. 2, pp. 157–162, Mar. 2002.

      [7] Y. Tang, T. Wang, and Y.He, “A switched-capacitor-based active-network converter with high voltage gain,†IEEE Trans. Power Electron., vol. 29, no. 6, pp. 2959–2968, Jun. 2014.

      [8] K. I. Hwu, C. F. Chuang, andW. C. Tu, “High voltage-boosting converters based on bootstrap capacitors and boost inductors,†IEEE Trans. Ind. Electron., vol. 60, no. 6, pp. 2178–2193, Jun. 2013.

      [9] C.-M. Young, M.-H.Chen, T.-A. Chang,C.-C. Ko, and K.-K. Jen, “Cascade Cockcroft–Walton voltage multiplier applied to transformerless high step-up DC–CDC converter,†IEEE Trans. Ind. Electron., vol. 60, no. 2, pp. 523–537, Feb. 2013.

      [10] D. S. Wijeratne and G. Moschopoulos, “Quadratic power conversion for power electronics: Principles and circuits,†IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 59, no. 2, pp. 1967–1979, Feb. 2011.

      [11] G. A. L. Henn, R. N. A. L. Silva, P. P. Praca, L. H. S. C. Barreto, and D. S. Oliveira, Jr., “Interleaved-boost converter with high voltage gain,â€IEEE Trans. Power Electron., vol. 25, no. 11, pp. 2753–2761, Nov. 2010.

      [12] W. C. Li, X. Xiang, C. S. Li, W. H. Li, and X. He, “Interleaved high step-up ZVT converter with built-in transformer voltage doubler cell for distributed PV generation system,†IEEE Trans. Power Electron., vol. 28, no. 1, pp. 300–313, Jan. 2013.

      [13] D. Li, P. C. Loh, M. Zhu, G. Feng, and F. Blaabjerg, “Generalized multicell switched-inductor and switched-capacitor Z-source inverters,†IEEE Trans. Power Electron., vol. 28, no. 2, pp. 837–848, Feb. 2013.

      [14] W. Qian, F. Z. Peng, and H. Cha, “Trans-Z-source inverters,†IEEE Trans. Power Electron., vol. 26, no. 12, pp. 3453–3463, Feb. 2011.

      [15] M. S. Shen et al., “Constant boost control of the Z-source inverter to minimize current ripple and voltage stress,†IEEE Trans. Ind. Appl., vol. 42, no. 3, pp. 770–778, May/Jun. 2006.

      [16] Y. Li, S. Jiang, J. G. Cintron-Rivera, and F. Z. Peng, “Modeling and control of quasi-Z-source inverter for distributed generation applications,†IEEE Trans. Ind. Electron., vol. 60, no. 4, pp. 1532–1541, Apr. 2013.

      [17] V. P. Galigekere N and M. K. Kazimierczuk, “Analysis of PWM Z-source DC-DC converter in CCM for steady state,†IEEE Trans. Circuits System. I, Reg. Papers, vol. 59, no. 4, pp. 854–863, Apr. 2012.

      [18] G. N. Veda Prakash and M. K. Kazimierczuk, “Small-signal modeling of open-loop PWM Z-source converter by circuit-averaging technique,†IEEE Trans. Power Electron., vol. 28, no. 3, pp. 1286–1296, Mar. 2013.

      [19] D. Vinnikov and I. Roasto, “Quasi-Z-source-based isolated DC/DC converters for distributed power generation,†IEEE Trans. Ind. Electron., vol. 58, no. 1, pp. 192–201, Jan. 2011.

      [20] F. Z. Peng, “Z-source inverter,†IEEE Trans. Ind. Appl., vol. 39, no. 2, pp. 504–510, Mar. 2003.

      [21] W. Li et al., “Series asymmetrical half-bridge converters with voltage autobalance for high input-voltage applications,†IEEE Trans. Power Electron., vol. 28, no. 8, pp. 3665–3674, Aug. 2013.

      [22] J. C. Rosas-Caro, F. Z. Peng, H. Cha, and C. Rogers, “Z-source-converterbased energy-recycling zero-voltage electronic loads,†IEEE Trans. Ind. Electron., vol. 56, no. 12, pp. 4894–4902, Dec. 2009.

      [23] C. Mario, C. Alfio, A. Rosario, and G. Francesco, “Soft-switching converter with HF transformer for grid-connected photovoltaic systems,†IEEE Trans. Ind. Electron., vol. 57, no. 5, pp. 1678–1686, May 2010.

      [24] B. M. Ge, Q. Lei, W. Qian, and F. Z. Peng, “A family of Z-source matrix converters,†IEEE Trans. Ind. Electron., vol. 59, no. 1, pp. 35–46, Jan. 2012.

  • Downloads

  • How to Cite

    Kishor, G., Harsha Vardhan Reddy, M., & Pushpalatha, K. (2018). Performance investigation of 3z buck boost converter for renewable applications. International Journal of Engineering & Technology, 7(3.29), 352-359. https://doi.org/10.14419/ijet.v7i3.29.19191