Efficient Algorithm for Ocean Wave Profile Simulation in Malaysian Waters


  • Ahmad Idris
  • Indra Sati Hammonangan Harahap
  • Montassir Osman Ali




Wave Profile, Ocean waves, Malaysian waters


This study presents an approach for ocean wave simulation in Malaysian waters by using the eigenfunctions of Prolate Spheroidal Wave Functions in which fewer number of independent random variables are used. It is an efficient approach that can allow the use of state of the art stochastic methods in the analysis and design of offshore structures. An algorithm was also developed for the simulation of the wave in a computer program in which sub-routines were provided to solve the equations and matrices involved. The wave profile for the environmental parameters of the Malaysian offshore locations was simulated and the results presented.




[1] T.M.Q. Al-Ghuribi, M.S. Liew, N.A. Zawawi, M.A. Ayoub, Decommissioning decision criteria for offshore installations and well abandonment, in: Eng. Challenges Sustain. Futur. - Proc. 3rd Int. Conf. Civil, Offshore Environ. Eng. ICCOEE 2016, 2016.

[2] A. Idris, I. Sati, H. Harahap, M. Osman, A. Ali, An approach for time-dependent reliability analysis of Jackup structures, Cogent Eng. 84 (2017). doi:10.1080/23311916.2017.1409932.

[3] Z. Nizamani, D. Raja, L.W. Yih, Y.C. Yin, Determination of joint distribution for operating metocean variables for offshore structures, in: AIP Conf. Proc., 2017. doi:10.1063/1.4979376.

[4] R. Kandasamy, F. Cui, N. Townsend, C.C. Foo, J. Guo, A. Shenoi, Y. Xiong, A review of vibration control methods for marine offshore structures, Ocean Eng. 127 (2016) 279–297. doi:10.1016/j.oceaneng.2016.10.001.

[5] A. Idris, I.S.H. Harahap, M. Osman, A. Ali, Variation of Time Domain Failure Probabilities of Jack-up with Wave Return Periods Variation of Time Domain Failure Probabilities of Jack-up with Wave Return Periods, IOP Conf. Ser. Earth Environ. Sci. 140 (2018). doi:doi :10.1088/1755-1315/140/1/012120.

[6] C.C. Mei, The applied dynamics of ocean surface waves, Book. 11 (1984) 321. doi:10.1016/0029-8018(84)90033-7.

[7] G. Stefanou, The stochastic finite element method: Past, present and future, Comput. Methods Appl. Mech. Eng. 198 (2009) 1031–1051. doi:10.1016/j.cma.2008.11.007.

[8] S.. Chakrabarti, Hydrodynamics of offshore structures, Computational Mechanics Publications, Illinois, 1987.

[9] K.K. Phoon, S.P. Huang, S.T. Quek, Simulation of second-order processes using Karhunen-Loeve expansion, Comput. Struct. 80 (2002) 1049–1060. doi:10.1016/S0045-7949(02)00064-0.

[10] V.J. Kurian, S.S. Goh, M.M.A. Wahab, M.S. Liew, Component reliability assessment of offshore jacket platforms, Res. J. Appl. Sci. Eng. Technol. 9 (2015) 1–10. doi:10.1080/17445302.2015.1038869.

[11] A. Idris, I. Harahap, M. Ali, Efficiency of Trigonometric and Eigen Function Methods for Simulating Ocean Wave Profile, Indian J. Sci. Technol. 10 (2017).

[12] P.D. Sclavounos, Karhunen-Loeve representation of stochastic ocean waves, Proc. R. Soc. A Math. Phys. Eng. Sci. 468 (2012) 2574–2594. doi:10.1098/rspa.2012.0063.

[13] I.C. Moore, M. Cada, Prolate spheroidal wave functions, an introduction to the Slepian series and its properties, Appl. Comput. Harmon. Anal. 16 (2004) 208–230. doi:10.1016/j.acha.2004.03.004.

[14] A. Osipov, V. Rokhlin, On the evaluation of prolate spheroidal wave functions and associated quadrature rules, Elsevier Inc., 2014. doi:10.1016/j.acha.2013.04.002.

[15] H. Xiao, V. Rokhlin, N. Yarvin, Prolate spheroidal wavefunctions, quadrature and interpolation, Inverse Probl. 17 (2001) 805–838. doi:10.1088/0266-5611/17/4/315.

View Full Article: