Asymptotic Stability of Solution of Lyapunov Type Matrix Volterra Integro-Dynamic System on Time Scales

Authors

  • G V. Ramana
  • G V. S. R. Deekshitulu
  • . .

DOI:

https://doi.org/10.14419/ijet.v7i3.31.18294

Published:

2018-08-24

Keywords:

Asymptotic stability, Lyapunov, integro systems, time scales.

Abstract

 

This article emphasizes the characteristics and nature of  asymptotic stability of solution of Lyapunov type matrix Volterra integro-dynamic system on time scales.

 

References

[1] M. Bohner, A. Peterson, Dynamic Equations on Time Scales, Birkhauser, Boston, (2001).

[2] T.A. Burton, “Stability theory for Volterra equationsâ€, J. Diff Equs, Vol.32, (1979), pp.101-118.

[3] T.A. Burton, “Integro differential equationsâ€, Proc. Amer.

Math. Soc Vol.79, (1980), pp.393-399.

[4] S.I. Grossman, R. K. Miller, “Perturbation theory for Volterra integro-differential systemâ€, J. diff. Equs Vol.8, (1970),

pp.451-474.

[5] S. Hilger, Ein Mabkettenkalkul mit Anwendung auf

Zentrumsmannigfaltigkeiten, PhD thesis, Universitat

Wurzburg, (1988).

[6] B. Karpuz, Basics of volterra integral equations on time scales,

(2011).

[7] T. Kulik, C.C. Tisdell, “Volterra integral equations on time

scalesâ€, Int. J. Difference Equ, Vol.3, (2008) pp.103-133.

[8] V. Lupulescu, K. Ntouyas, and A.Younus, “Qualitative

aspects of a Volterra integro-dynamic system on time

scalesâ€, Electronic Journal of Qualitative Theory of

Differential Equations, Vol.5, (2013), pp.1-35.

[9] V. Volterra, Theory of functionals and integral and

integro-differential equations, Dover, New York, (1950).

View Full Article:

How to Cite

V. Ramana, G., V. S. R. Deekshitulu, G., & ., . (2018). Asymptotic Stability of Solution of Lyapunov Type Matrix Volterra Integro-Dynamic System on Time Scales. International Journal of Engineering & Technology, 7(3.31), 179–185. https://doi.org/10.14419/ijet.v7i3.31.18294
Received 2018-08-26
Accepted 2018-08-26
Published 2018-08-24