Fixed Point Theorems Under Caristi’s Type Map on C∗ -Algebra Valued Fuzzy Soft Metric Space

Authors

  • B Srinuvasa Rao

  • G N.V.Kishore

  • Trkd Vara Prasad

Received date: August 25, 2018

Accepted date: August 25, 2018

Published date: August 24, 2018

DOI:

https://doi.org/10.14419/ijet.v7i3.31.18277

Keywords:

Bounded below function, Caristi’s mapping, C∗-algebra-valued Fuzzy soft metric, completeness, fixed point, Lower semi continuity.

Abstract

In this paper, we present the extension of Caristi’s fixed point theorems for mappings defined on C∗-algebra-valued Fuzzy soft metric spaces. We establish the existence of simple proof of caristi’s type fixed point theorems in C∗-algebra-valued Fuzzy soft metric spaces and we give some examples which supports our main results.

 

 

References

  1. [1] Maji, Pk., Biswas, R and Roy, A. R., “Fuzzy soft Sets". Journal of
    Fuzzy Mathematics, Vol9, no3 (2001) 589-602.

    [2] Thangaraj Beaula and Christinal Gunaseeli., on fuzzy soft
    metric spaces. Malaya J. Mat.2 (3) (2015), 438-442.

    [3] Molodstov. D. A; “Fuzzy soft Sets"- First Result, Computers
    and Mathematics with Application, Vol.37 (1999) 19-31.

    [4] Roy, S. and Samanta T. K., “A note on Fuzzy soft Topological
    Spaces", Annals of Fuzzy Mathematics and Informatics .2011.

    [5] Tanay, B, and Kandemir, M. B.,â€Topological Structure of fuzzy
    soft sets", Comput. Math. Appl. 61(2011), 2952-2957.

    [6] Thangaraj Beaula, R.Raja., Completeness in Fuzzy Soft Metric
    Space. Malaya J. Mat. S (2) (2014), 197-20220(1), (2015), 55-67.

    [7] Caristi, J., Fixed point theorems for mappings satisfying inwardness conditions. Trans. Amer. Math. Soc., 215 (1976), 241-251. http://dx.doi.org/10.1090/s0002-9947-1976-0394329-4.

    [8] S. Banach, “Sur les operations dans les ensembles abstraits et leur application aux equations integralesâ€, Fund. Math, 3 , 1922, 133-181.1.

    [9] Agarwal, RP, Khamsi, MA; Extension of Caristis´ fixed point
    theorem to vector valued metric space. Nonlinear Anal. TMA
    74, 141-145(2011), doi: 10. 1016/j.na. 2010.08.025.

    [10] Dur-e-Shehwar,et.al., Caristis´ fixed point theorem on C∗-algebra valued metric spaces. J. Nonlinear Sci. Appl.9 (2016), 584-588.

    [11] Ekeland, I., On the variational principal. J. Math. Anal. Appl.
    47(2), 324-353 (1974).

    [12] Erdal Karapinar., Generalization of Caristi Kirks´ Theorem on partial metric spaces. Fixed point theory and Applications 2011, 2011:4.

    [13] Farshid Khojasteh, et. al., some applications of Caristis´ fixed
    point theorem in metric spaces. Fixed point theory and Applications (2016), 2016:16.

    [14] M. A. Khamsi, W. A. Kirk, An Introduction to metric spaces
    and fixed point theory
    , Wiley-Inter science, New York, (2001), http://dx.doi.org/10.1002/9781118033074.

    [15] M. A. Khamsi., Remarks on Caristis´ fixed point theorem. Nonlinear Anal, 71 (2009), 227-231. 1.

    [16] Wei-Shih Du., A Direct Proof of Caristis Fixed Point Theorem.
    Applied Mathematical Sciences, Vol. 10, 2016, no. 46, 2289 -
    2294.

    [17] Ma, ZH, Jiang, LN, Sun, HK. C∗ -algebra valued metric space
    and related fixed point theorems. Fixed point theory Appl.2014.
    ID 206(2014), 11 pages. 1, 2, 2.5, 3.6.

    [18] G.J. Murphy., C∗ -algebras and Operator Theory. Academic press, Boston (1990).2.

Downloads

How to Cite

Srinuvasa Rao, B., N.V.Kishore, G., & Vara Prasad, T. (2018). Fixed Point Theorems Under Caristi’s Type Map on C∗ -Algebra Valued Fuzzy Soft Metric Space. International Journal of Engineering and Technology, 7(3.31), 111-114. https://doi.org/10.14419/ijet.v7i3.31.18277

Received date: August 25, 2018

Accepted date: August 25, 2018

Published date: August 24, 2018