Analysis of Hexagonal Photonic Crystal Fiber Using the Golden Ratio

  • Abstract
  • Keywords
  • References
  • PDF
  • Abstract

    In this research, the proposed hexagonal photonic crystal fibers design is modelled using the principle of golden ratio; fixing the proportion of pitch to diameter of the air holes constant. Finite element method with perfectly matched layer boundary is used for numerical simulation of different properties. It is shown that the proposed design has lower effective area of below 9 μm2, low chromatic dispersion value of below 57 ps/(km.nm) and confinement loss of less than 0.01 dB/km at 1.55 μm wavelength. The proposed hexagonal photonic crystal fiber is applicable for data transmission systems.



  • Keywords

    Photonic crystal fiber; golden ratio; chromatic dispersion; confinement loss.

  • References

      [1] J. C. Knight, T. A. Birks, P. St. J. Russell, & D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Optics Letters, vol. 21, pp. 1547-1549, 1996.

      [2] F. Begum, Y. Namihira, T. Kinjo, and S. Kaijage, “Supercontinuum generation in square photonic crystal fiber with nearly zero ultra-flattened chromatic dispersion and fabrication tolerance analysis,” Optics Communications, vol. 284, pp. 965-970, 2011.

      [3] X. Jiang, T. G. Euser, A. Abdolvand, F. Babic, F. Tani, N. Y. Joly, J.C. Travers, and P. St. J. Russell, “Single-mode hollow-core photonic crystal fiber made from soft glass,” Optics Express, vol. 19, pp. 15438-15444, 2011.

      [4] T. A. Birks, J. C. Knight, and P. St. J. Russell, “Endlessly single-mode photonic crystal fiber,” Optics Letters, vol. 22, pp. 961-963, 1997.

      [5] Y. Jung, G. Brambilla, and D. J. Richardson, “Comparative study of the effective single mode operational bandwidth in sub-wavelength optical wires and conventional single-mode fibers,” Optics Express, vol. 17, pp. 16619-16624, 2009.

      [6] F. Begum, A. K. Azad, S. A. Bakar, I. Petra, K. Miyagi, and Y. Namihira, “Large effective area square photonic crystal fiber for optical communications,” Journal of Engineering and Applied Sciences, vol. 12, pp. 4016-4021, 2017.

      [7] R. Hao, and G. Sun, “Design of photonic crystal fiber with large negative dispersion and high nonlinearity,” Optik - International Journal for Light and Electron Optics, vol. 126, pp. 3353-3356, 2015.

      [8] P. Kumar, Rohan, V. Kumar, and J. S. Roy, “Dodecagonal photonic crystal fibers with negative dispersion and low confinement loss,” Optik - International Journal for Light and Electron Optics, vol. 144, pp. 363-369, 2017.

      [9] A. B. García, I. A. Sukhoivanov, J. A. A. Lucio, O. G. I. Manzano, I. Guryev, J. C. H. García, and G. R. Ortiz, “Numerical Study of Highly Nonlinear Photonic Crystal Fiber with Tunable Zero Dispersion Wavelengths,” Journal of Electromagnetic Analysis and Applications, vol. 07, pp. 141-151, 2015.

      [10] J. Liao, J. Sun, Y. Qin, & M. Du, “Ultra-flattened chromatic dispersion and highly nonlinear photonic crystal fibers with ultralow confinement loss employing hybrid cladding,” Optical Fiber Technology, vol. 19, pp. 468-475, 2013.

      [11] M. D. Nielsen, J. R. Folkenberg, N. A. Mortensen, & A. Bjarklev, “Bandwidth comparison of photonic crystal fibers and conventional single-mode fibers,” Optics Express, vol. 12, pp. 430-435, 2004.

      [12] A. Agrawal, N. Kejalakshmy, J. Chen, B. M. A. Rahman, & K. T. V. Grattan, “Golden spiral photonic crystal fiber: polarization and dispersion properties,” Optics Letters, vol. 33, pp. 2716-2718, 2008.

      [13] M. I. Hasan, M. S. Habib, M. S. Habib, & S. M. A. Razzak, “Design of hybrid photonic crystal fiber: Polarization and dispersion properties,” Photonics and Nanostructures - Fundamentals and Applications, vol. 12, pp. 205-211, 2014.

      [14] Á. d. O. Guimarães, J. P. d. Silva, & E. R. M. Dantas, “Chromatic Dispersion of an Optical Fiber Based on Photonic Quasicrystals with Twelve-Fold Symmetry and its Application as Directional Coupling,” Journal of Microwaves, Optoelectronics and Electromagnetic Applications, vol. 14, pp. 170-183, 2015.

      [15] K. Saitoh, M. Koshiba, T. Hasegawa, & E. Sasaoka, “Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion,” Optics Express, vol. 11, pp. 843-852, 2003.

      [16] F. Begum, Y. Namihira, T. Kinjo, & S. Kaijage, “Supercontinuum generation in photonic crystal fibers at 1.06 mm, 1.31 mm and 1.55 mm wavelengths,” Electronics Letters, vol. 46, pp.1518-1520, 2010.

      [17] A. Ferrando, E. Silvestre, J. J. Miret, P. Andrés, & M. V. Andrés, “Full-vector analysis of a realistic photonic crystal fiber,” Optics Letters, vol. 24, pp. 276-278, 1999.




Article ID: 16313
DOI: 10.14419/ijet.v7i3.13.16313

Copyright © 2012-2015 Science Publishing Corporation Inc. All rights reserved.