Endocrine Apparatus of the Rat Testes in the Adaptation Dynamics to Low Temperatures

 
 
 
  • Abstract
  • Keywords
  • References
  • PDF
  • Abstract


    Within the framework of the experimental study, new data were obtained on the endocrine apparatus of rat testicles represented by interstitial endocrinocytes, or Leydig cells (CL), in the dynamics of adaptation of the animal body to low temperatures. Using methods of morphological analysis, including both routine and modern methods, it was found that in the early stages of adaptation the ratio of the main morphofunctional types of CL is violated, the index of CL activity decreases, their sizes decrease, resulting in a decrease in the concentration of testosterone in the blood serum. In the course of further adaptation the relative amount of CL reduces, increasing the number of degenerating CL. In the later stages of adaptation, the relative amount of CL remains reduced, the activity index of endocrinocytes increases, compensatory hypertrophy of CL develops, which leads to an increase in the level of testosterone in the blood serum

     

     


  • Keywords


    Leydig cells, rat testes, adaptation.

  • References


      [1] Brukhin, G. V., Sizonenko, M. L., Romanov, A. S. (2010). Characterization of endocrine function of the testes of offspring of female rats with experimental chronic liver injury of various Genesis. In the collection "Questions of morphology of the XXI century". St. Petersburg: Dean, 2010. 70-75.

      [2] Dmitrieva, O. A., Sherstyuk, B. V. (2007). Influence of stress-induced reduction in the level of testosterone on the histological changes of the genital organs of rats. Pacific medical journal. № 3. 55-57.

      [3] Koldysheva, E. V. (2008). Ultrastructural equivalents of adaptive reorganization of the adrenal cortex under the action of extreme factors. Bulletin OF the Russian Academy of Sciences. № 6. 139-144.

      [4] Kotelnikova, S. V., Sokolova, N. G., Kotelnikov, A. V. (2008). State of lipid peroxidation in different organs and tissues of white rats in winter and summer under conditions of cadmium intoxication, Bulletin of experimental biology and medicine. Vol. 146, No. 9. 264-265.

      [5] Liu, B. N., Liu, M. B. (2005). Oxygen-peroxide concept of apoptosis: increasing the level of argument and development. Advances in modern biology. № 6. 567-578.

      [6] Potemina, T. E. (2008). Violation of spermatogenesis under stress in male rats /T. E. Potemina // Bulletin of experimental biology and medicine. Vol. 145, № 6. 645-647.

      [7] Saiapina, I. Y., Tseluyko, S. S. (2011). Dynamics of quantitative indicators of Leydig cells in adaptation to low temperatures. Far Eastern medical journal. № 2. 84-87.

      [8] Saipina, I. Y., Tseluiko, S. S., Lashin, S. A. (2018). Functional morphology of the organs of the male reproductive system during adaptation to low temperatures on the background of correction of dihydroquercetin. Blagoveshchensk: LLC “Tipografiya”, 179.

      [9] Sudakov, K. V. (2008). The evolution of the concept of stress. Bulletin of the Russian Academy of medical Sciences. № 11. 59-65.

      [10] Sych, V. F., Arabia, V. I., Pozdnyakova, N. In. (2004). The Activity of the endocrine tissue of the testes and spermatogenic cycle. Russian physiological journal. I. M. Sechenov. Vol. 90, № 8. 97.

      [11] Cebrzynski, O. I., Pochernyaeva, V. F., Dmitrenko, N. (2008). Prooxidant-antioxidant system of the testes and sperm. Poltava: publishing house of NAVEL RVV, 2008. 102.

      [12] Sharypova, N. V., Sveshnikova, A. A. (2013). Concentration of hormones regulating sexual function, under prolonged exposure to stress factors of extreme intensity Fundamental research. № 3. 404-410.

      [13] Shevlyuk, N. N., Blinova, E. V., Bokov, D. A. (2010). Endocrinocytes interstitial (Leydig cells) of the testes in the postnatal ontogenesis of mammals. In collection: Problems of the morphology of the XXI century. Issue 2. SPb.: IZDATELSTVO Dean, 192-195.

      [14] Shustanova, T. A., Bondarenko, T. I., Milutina, N. P. (2004). Free-Radical mechanism for the development of cold stress in rats. Russian physiological journal. Sechenov. Vol. 90, № 1. 73 - 82.

      [15] Agarwal, A., Sharma, R., Gupta, S., Harlev, A., Ahmad, G., Du Plessis, S. S., ... & Durairajanayagam, D. (Eds.). (2017). Oxidative Stress in Human Reproduction: Shedding Light on a Complicated Phenomenon. Springer.

      [16] Aitken, R. J., & Roman, S. D. (2008). Antioxidant systems and oxidative stress in the testes. Oxidative medicine and cellular longevity, 1(1), 15-24.

      [17] Beattie, M. C., Adekola, L., Papadopoulos, V., Chen, H., & Zirkin, B. R. (2015). Leydig cell aging and hypogonadism. Experimental gerontology, 68, 87-91.

      [18] Chen, H., Pechenino, A. S., Liu, J., Beattie, M. C., Brown, T. R., & Zirkin, B. R. (2008). Effect of glutathione depletion on Leydig cell steroidogenesis in young and old brown Norway rats. Endocrinology, 149(5), 2612-2619.

      [19] Chen, Y., Wang, Q., Wang, F. F., Gao, H. B., & Zhang, P. (2012). Stress induces glucocorticoid-mediated apoptosis of rat Leydig cells in vivo. Stress, 15(1), 74-84.

      [20] Davidoff, M. S., Middendorff, R., Müller, D., & Holstein, A. F. (2009). Development of the Neuroendocrine Leydig Cells. In The Neuroendocrine Leydig Cells and their Stem Cell Progenitors, the Pericytes (pp. 49-87). Springer, Berlin, Heidelberg.

      [21] Hales, D. B. (2002). Testicular macrophage modulation of Leydig cell steroidogenesis. Journal of reproductive immunology, 57(1-2), 3-18.

      [22] Hardy, M. P., Gao, H. B., Dong, Q., Ge, R., Wang, Q., Chai, W. R., ... & Sottas, C. (2005). Stress hormone and male reproductive function. Cell and tissue research, 322(1), 147-153.

      [23] Hu, G. X., Lin, H., Sottas, C. M., Morris, D. J., Hardy, M. P., & Ge, R. S. (2008). Inhibition of 11β‐Hydroxysteroid Dehydrogenase Enzymatic Activities by Glycyrrhetinic Acid In Vivo Supports Direct Glucocorticoid‐Mediated Suppression of Steroidogenesis in Leydig Cells. Journal of andrology, 29(3), 345-351.

      [24] Kavitha, T. S., Parthasarathy, C., Sivakumar, R., Badrinarayanan, R., & Balasubramanian, K. (2006). Effects of excess corticosterone on NADPH generating enzymes and glucose oxidation in Leydig cells of adult rats. Human & experimental toxicology, 25(3), 119-125.

      [25] Leisegang, K., & Henkel, R. (2018). The in vitro modulation of steroidogenesis by inflammatory cytokines and insulin in TM3 Leydig cells. Reproductive Biology and Endocrinology, 16(1), 26.

      [26] Martin, L. J. (2016). Cell interactions and genetic regulation that contribute to testicular Leydig cell development and differentiation. Molecular reproduction and development, 83(6), 470-487.

      [27] O'Shaughnessy, P. J., Morris, I. D., & Baker, P. J. (2008). Leydig cell re-generation and expression of cell signaling molecules in the germ cell-free testis. Reproduction, 135(6), 851-858.

      [28] Parthasarathy, C., Yuvaraj, S., Ilangovan, R., Janani, P., Kanagaraj, P., Balaganesh, M., ... & Balasubramanian, K. (2009). Differential response of Leydig cells in expressing 11β-HSD type I and cytochrome P450 aromatase in male rats subjected to corticosterone deficiency. Molecular and cellular endocrinology, 311(1-2), 18-23.

      [29] Yildizbayrak, N., & Erkan, M. (2018). Acrylamide disrupts the steroidogenic pathway in Leydig cells: possible mechanism of action. Toxicological & Environmental Chemistry, 1-12.

      [30] Zirkin, B. R., & Papadopoulos, V. (2018). Leydig Cells: Formation, Function and regulation. Biology of reproduction.


 

View

Download

Article ID: 16137
 
DOI: 10.14419/ijet.v7i3.5.16137




Copyright © 2012-2015 Science Publishing Corporation Inc. All rights reserved.