An extensive analysis and conduct comparative based on statistical attach of LSB substitution and LSB matching

 
 
 
  • Abstract
  • Keywords
  • References
  • PDF
  • Abstract


    Steganography and steganalysis are the two diverse sides of the same coin, as steganalysis is a countermeasure to steganography. The major function of steganalysis is to differentiate between actual media and suspected media that contains concealed messages. Carrying out this task can be difficult for new adaptive steganography, because modifications made as a result of concealed messages is very minimal. De-spite the availability of so many techniques in recent times, some of the oldest and most commonly used technique in the last years is the LSB substitution and matching techniques. The statistical steganalysis in LSB substitution and LSB matching approach for the digital imag-es is being analyzed and discussed extensively in this paper. The major contribution of the paper is the evaluation of methods, by means of analyzing challenges and comparing approved studies, with the intention of unveiling novel directions which have the potentials of provid-ing improved and effective steganalysis approach.

     


  • Keywords


    Information Hiding; Image Steganalysis, Steganography; LSB Matching, LSB Substitution.

  • References


      [1] Srivastava, S., Thakral, P., Bansal, V., & Shandil, V. (2018). A Novel Image Steganography and Steganalysis Technique Based on Pattern Searching. In Optical and Wireless Technologies (pp. 531-537). Springer, Singapore. https://doi.org/10.1007/978-981-10-7395-3_59.

      [2] Boroumand, M., & Fridrich, J. (2018). Applications of explicit non-linear feature maps in steganalysis. IEEE Transactions on Information Forensics and Security, 13(4), 823-833. https://doi.org/10.1109/TIFS.2017.2766580.

      [3] Karampidis, K., Kavallieratou, E., & Papadourakis, G. (2018). A review of image steganalysis techniques for digital forensics. Journal of information security and applications, 40, 217-235. https://doi.org/10.1016/j.jisa.2018.04.005.

      [4] MAHDI HASHIM, M. O. H. A. M. M. E. D., RAHIM, M., & SHAFRY, M. (2017). IMAGE STEGANOGRAPHY BASED ON ODD/EVEN PIXELS DISTRIBUTION SCHEME AND TWO PARAMETERS RANDOM FUNCTION. Journal of Theoretical & Applied Information Technology, 95(22).

      [5] Johnson, N. F., & Jajodia, S. (1998, April). Steganalysis of images created using current steganography software. In International Workshop on Information Hiding (pp. 273-289). Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-49380-8_19.

      [6] Johnson, N. F., & Jajodia, S. (1998). Exploring steganography: Seeing the unseen. Computer, 31(2). https://doi.org/10.1109/MC.1998.4655281.

      [7] Geetha, S., Sindhu, S. S. S., & Kamaraj, N. (2010). Passive steganalysis based on higher order image statistics of curvelet transform. International Journal of Automation and Computing, 7(4), 531-542. https://doi.org/10.1007/s11633-010-0537-1.

      [8] Chandramouli, R., Kharrazi, M., & Memon, N. (2003, October). Image steganography and steganalysis: Concepts and practice. In International Workshop on Digital Watermarking (pp. 35-49). Springer, Berlin, Heidelberg.

      [9] HASHIM, M., RAHIM, M., SHAFRY, M., & ALWAN, A. A. (2018). A REVIEW AND OPEN ISSUES OF MULTIFARIOUS IMAGE STEGANOGRAPHY TECHNIQUES IN SPATIAL DOMAIN. Journal of Theoretical & Applied Information Technology, 96(4).

      [10] Katzenbeisser, S., & Petitcolas, F. (2000). Information hiding techniques for steganography and digital watermarking. Artech house.

      [11] Nissar, A., & Mir, A. H. (2010). Classification of steganalysis techniques: A study. Digital Signal Processing, 20(6), 1758-1770. https://doi.org/10.1016/j.dsp.2010.02.003.

      [12] Chanu, Y. J., Singh, K. M., & Tuithung, T. (2012). Image steganography and steganalysis: A survey. International Journal of Computer Applications, 52(2).

      [13] Luo, X. Y., Wang, D. S., Wang, P., & Liu, F. L. (2008). A review on blind detection for image steganography. Signal Processing, 88(9), 2138-2157. https://doi.org/10.1016/j.sigpro.2008.03.016.

      [14] Pal, P., & Dubey, S. (2016). Various JPEG image steganography techniques: a review. International Journal of Scientific & Engineering Research, 7(2), 417-421.

      [15] Juarez-Sandoval, O., Cedillo-Hernandez, M., Sanchez-Perez, G., Toscano-Medina, K., Perez-Meana, H., & Nakano-Miyatake, M. (2017, April). Compact image steganalysis for LSB-matching steganography. In Biometrics and Forensics (IWBF), 2017 5th International Workshop on (pp. 1-6). IEEE.

      [16] Mielikainen, J. (2006). LSB matching revisited. IEEE signal processing letters, 13(5), 285-287. https://doi.org/10.1109/LSP.2006.870357.

      [17] Ker, A. D. (2005). Steganalysis of LSB matching in grayscale images. IEEE signal processing letters, 12(6), 441-444. https://doi.org/10.1109/LSP.2005.847889.

      [18] Xi, L., Ping, X., & Zhang, T. (2010, July). Improved LSB matching steganography resisting histogram attacks. In Computer Science and Information Technology (ICCSIT), 2010 3rd IEEE International Conference on (Vol. 1, pp. 203-206). IEEE.

      [19] Zhang, J., Cox, I. J., & Doerr, G. (2007, October). Steganalysis for LSB matching in images with high-frequency noise. In Multimedia Signal Processing, 2007. MMSP 2007. IEEE 9th Workshop on (pp. 385-388). IEEE.

      [20] Wayner, P. (2002). Disappearing cryptography information hiding: steganography & watermarking (2nd ed). Amsterdam: Morgan Kaufmann Publishers.

      [21] Westfeld, A., & Pfitzmann, A. (2000). Attacks on steganographic systems breaking the steganographic utilities EzStego, Jsteg, Steganos, and S-Tools—and some lessons learned Lecture notes in computer science. vol. 1768. Berlin: Springer-Verlag.

      [22] Zhang, T., & Ping, X. (2003, April). Reliable detection of LSB steganography based on the difference image histogram. In Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP'03) 2003 IEEE International Conference on (Vol. 3, pp. III-545). IEEE.

      [23] Karampidis, K., Kavallieratou, E., & Papadourakis, G. (2018). A review of image steganalysis techniques for digital forensics. Journal of information security and applications, 40, 217-235. https://doi.org/10.1016/j.jisa.2018.04.005.

      [24] Johnson, N. F., & Jajodia, S. (1998, April). Steganalysis of images created using current steganography software. In International Workshop on Information Hiding (pp. 273-289). Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-49380-8_19.

      [25] Hawi, T. A., Qutayri, M. A., & Barada, H. (2004, November). Steganalysis attacks on stego-images using stego-signatures and statistical image properties. In TENCON 2004. 2004 IEEE Region 10 Conference (pp. 104-107). IEEE.

      [26] Niimi, M., Eason, R. O., Noda, H., & Kawaguchi, E. (2001, August). Intensity histogram steganalysis in BPCS-steganography. In Security and Watermarking of Multimedia Contents III (Vol. 4314, pp. 555-565). International Society for Optics and Photonics. https://doi.org/10.1117/12.435440.

      [27] Zhi, L., Fen, S. A., & Xian, Y. Y. (2003, September). A LSB steganography detection algorithm. In Personal, Indoor and Mobile Radio Communications, 2003. PIMRC 2003.14th IEEE Proceedings on (Vol. 3, pp. 2780-2783). IEEE.

      [28] Chandramouli, R., & Subbalakshmi, K. P. (2003, May). Active steganalysis of spread spectrum image steganography. In Circuits and Systems, 2003. ISCAS'03. Proceedings of the 2003 International Symposium on (Vol. 3, pp. III-III). IEEE.

      [29] Yu, X., Tan, T., & Wang, Y. (2004, December). Reliable detection of BPCS-steganography in natural images. In null (pp. 333-336). IEEE.

      [30] Fridrich, J., Goljan, M., & Hogea, D. (2002, October). Steganalysis of JPEG images: Breaking the F5 algorithm. In International Workshop on Information Hiding (pp. 310-323). Springer, Berlin, Heidelberg.

      [31] Jiang, M., Wong, E. K., Memon, N., & Wu, X. (2005, March). Steganalysis of halftone images. In Acoustics, Speech, and Signal Processing, 2005. Proceedings. (ICASSP'05). IEEE International Conference on (Vol. 2, pp. ii-793). IEEE.

      [32] Farid, H. (2002). Detecting hidden messages using higher-order statistical models. In Image Processing. 2002. Proceedings. 2002 International Conference on (Vol. 2, pp. II-II). IEEE. https://doi.org/10.1109/ICIP.2002.1040098.

      [33] Avcibas, I., Memon, N., & Sankur, B. (2003). Steganalysis using image quality metrics. IEEE transactions on Image Processing, 12(2), 221-229. https://doi.org/10.1109/TIP.2002.807363.

      [34] Harmsen, J. J., & Pearlman, W. A. (2003, June). Steganalysis of additive-noise modelable information hiding. In Security and Watermarking of Multimedia Contents V (Vol. 5020, pp. 131-143). International Society for Optics and Photonics. https://doi.org/10.1117/12.476813.

      [35] Westfeld, A., & Pfitzmann, A. (1999, September). Attacks on steganographic systems. In International workshop on information hiding (pp. 61-76). Springer, Berlin, Heidelberg.

      [36] Fridrich, J., & Long, M. (2000). Steganalysis of LSB encoding in color images. In Multimedia and Expo, 2000. ICME 2000. 2000 IEEE International Conference on (Vol. 3, pp. 1279-1282). IEEE. https://doi.org/10.1109/ICME.2000.871000.

      [37] Fridrich, J., Goljan, M., & Du, R. (2001). Detecting LSB steganography in color, and gray-scale images. IEEE multimedia, 8(4), 22-28. https://doi.org/10.1109/93.959097

      [38] Dumitrescu, S., Wu, X., & Memon, N. (2002, June). On steganalysis of random LSB embedding in continuous-tone images. In Image Processing. 2002. Proceedings. 2002 International Conference on (Vol. 3, pp. 641-644). IEEE.

      [39] Dumitrescu, S., Wu, X., & Wang, Z. (2002, October). Detection of LSB steganography via sample pair analysis. In International Workshop on Information Hiding (pp. 355-372). Springer, Berlin, Heidelberg.

      [40] Dumitrescu, S., & Wu, X. (2002). Steganalysis of LSB embedding in multimedia signals. In Multimedia and Expo, 2002. ICME'02. Proceedings. 2002 IEEE International Conference on (Vol. 1, pp. 581-584). IEEE.

      [41] Fridrich, J., Goljan, M., & Soukal, D. (2003, June). Higher-order statistical steganalysis of palette images. In Security and Watermarking of Multimedia Contents V (Vol. 5020, pp. 178-191). International Society for Optics and Photonics. https://doi.org/10.1117/12.473140.

      [42] Westfeld, A. (2002, October). Detecting low embedding rates. In International Workshop on Information Hiding (pp. 324-339). Springer, Berlin, Heidelberg.

      [43] Chandramouli, R., Kharrazi, M., & Memon, N. (2003, October). Image steganography and steganalysis: Concepts and practice. In International Workshop on Digital Watermarking (pp. 35-49). Springer, Berlin, Heidelberg.

      [44] Zhang, T., Li, W., Zhang, Y., Zheng, E., & Ping, X. (2010). Steganalysis of LSB matching based on statistical modeling of pixel difference distributions. Information Sciences, 180(23), 4685-4694. https://doi.org/10.1016/j.ins.2010.07.037.

      [45] Schottle, P., Korff, S., & Bohme, R. (2012, December). Weighted stego-image steganalysis for naive content-adaptive embedding. In Information Forensics and Security (WIFS), 2012 IEEE International Workshop on (pp. 193-198). IEEE.

      [46] Kodovský, J., & Fridrich, J. (2013, March). Quantitative steganalysis using rich models. In Media Watermarking, Security, and Forensics 2013 (Vol. 8665, p. 86650O). International Society for Optics and Photonics.

      [47] Mirjavadi, S., Hamouda, A. M. S., Panahi, M. S., Jebeli, S. M., & Mousavi, M. (2013). A Combined Approach for Steganalysis embedded data stored in gray-scale images through LSB.

      [48] Thai, T. H., Retraint, F., & Cogranne, R. (2014). Statistical detection of data hidden in least significant bits of clipped images. Signal Processing, 98, 263-274. https://doi.org/10.1016/j.sigpro.2013.11.027.

      [49] Zhu, Z., Zhang, T., & Wan, B. (2013, June). A special detector for the edge adaptive image steganography based on LSB matching revisited. In Control and Automation (ICCA), 2013 10th IEEE International Conference on (pp. 1363-1366). IEEE.

      [50] Fridrich, J., & Kodovský, J. (2012, May). Steganalysis of LSB replacement using parity-aware features. In International Workshop on Information Hiding (pp. 31-45). Springer, Berlin, Heidelberg.

      [51] Cogranne, R., Thai, T. H., & Retraint, F. (2013, September). Asymptotically optimal detection of LSB matching data hiding. In Image Processing (ICIP), 2013 20th IEEE International Conference on (pp. 4437-4441). IEEE.

      [52] Guo, Y. Q., Kong, X. W., Wang, B., & Xiao, Q. (2013). Steganalysis of LSB matching based on the sum features of average co-occurrence matrix using image estimation. In The International Workshop on Digital Forensics and Watermarking 2012 (pp. 34-43). Springer, Berlin, Heidelberg.

      [53] Cogranne, R., & Retraint, F. (2013). Application of hypothesis testing theory for optimal detection of LSB matching data hiding. Signal Processing, 93(7), 1724-1737. https://doi.org/10.1016/j.sigpro.2013.01.014.

      [54] Cogranne, R., & Retraint, F. (2013). An asymptotically uniformly most powerful test for LSB matching detection. IEEE transactions on information forensics and security, 8(3), 464-476. https://doi.org/10.1109/TIFS.2013.2238232.

      [55] Patsakis, C., & Aroukatos, N. (2014). LSB and DCT steganographic detection using compressive sensing. Journal of Information Hiding and Multimedia Signal Processing, 5(1), 20-32.

      [56] Yang, G., Li, X., Li, B., & Guo, Z. (2015, December). A new detector of LSB matching steganography based on likelihood ratio test for multivariate Gaussian covers. In Signal and Information Processing Association Annual Summit and Conference (APSIPA), 2015 Asia-Pacific (pp. 757-760). IEEE.

      [57] Goljan, M., Fridrich, J., & Cogranne, R. (2014, December). Rich model for steganalysis of color images. In Information Forensics and Security (WIFS), 2014 IEEE International Workshop on (pp. 185-190). IEEE.

      [58] Xia, Z., Wang, X., Sun, X., Liu, Q., & Xiong, N. (2016). Steganalysis of LSB matching using differences between nonadjacent pixels. Multimedia Tools and Applications, 75(4), 1947-1962. https://doi.org/10.1007/s11042-014-2381-8.

      [59] Gui, X., Li, X., & Yang, B. (2014, August). Steganalysis of LSB matching based on local binary patterns. In Intelligent Information Hiding and Multimedia Signal Processing (IIH-MSP), 2014 Tenth International Conference on (pp. 475-480). IEEE.

      [60] Olguin-Garcia, H. J., Juarez-Sandoval, O. U., Nakano-Miyatake, M., & Perez-Meana, H. (2015, January). Color image steganalysis method for LSB matching. In Proceedings of the International Conference on Security and Management (SAM) (p. 309). The Steering Committee of the World Congress in Computer Science, Computer Engineering and Applied Computing (WorldComp).

      [61] Nouri, R., & Mansouri, A. (2015, November). Blind image steganalysis based on reciprocal singular value curve. In Machine Vision and Image Processing (MVIP), 2015 ninth Iranian Conference on (pp. 124-127). IEEE.

      [62] Dataset http://www.shsu.edu/~qxl005/New/Downloads/index.html

      [63] Goljan, M., & Fridrich, J. (2015, March). CFA-aware features for steganalysis of color images. In Media Watermarking, Security, and Forensics 2015 (Vol. 9409, p. 94090V). International Society for Optics and Photonics.

      [64] Farhat, F., & Ghaemmaghami, S. (2014). Towards blind detection of low-rate spatial embedding in image steganalysis. IET Image Processing, 9(1), 31-42. https://doi.org/10.1049/iet-ipr.2013.0877.

      [65] Chen, X., GAO, G., Liu, D., & Xia, Z. (2016). Steganalysis of LSB matching using characteristic function moment of pixel differences. China Communications, 13(7), 66-73. https://doi.org/10.1109/CC.2016.7559077.

      [66] Lin, Q., Liu, J., & Guo, Z. (2016, September). Local ternary pattern based on path integral for steganalysis. In Image Processing (ICIP), 2016 IEEE International Conference on (pp. 2737-2741). IEEE.

      [67] Desai, M. B., Patel, S. V., & Prajapati, B. (2016). ANOVA and Fisher Criterion based feature selection for lower dimensional universal image steganalysis. International Journal of Image Processing (IJIP), 10(3), 145-160.

      [68] Chaeikar, S. S., Zamani, M., Manaf, A. B. A., & Zeki, A. M. (2018). PSW statistical LSB image steganalysis. Multimedia Tools and Applications, 77(1), 805-835. https://doi.org/10.1007/s11042-016-4273-6.

      [69] Solodukha, R. A., & Atlasov, I. V. (2017, September). Modification of RS-steganalysis to attacks based on known stego-program. In Computer Technology and Applications (RPC), 2017 Second Russia and Pacific Conference on (pp. 176-179). IEEE.

      [70] Al-Jarrah, M. M., Al-Taie, Z. H., & Aboarqoub, A. (2017, July). Steganalysis Using LSB-Focused Statistical Features. In Proceedings of the International Conference on Future Networks and Distributed Systems (p. 41). ACM. https://doi.org/10.1145/3102304.3109814.

      [71] Juarez-Sandoval, O., Cedillo-Hernandez, M., Sanchez-Perez, G., Toscano-Medina, K., Perez-Meana, H., & Nakano-Miyatake, M. (2017, April). Compact image steganalysis for LSB-matching steganography. In Biometrics and Forensics (IWBF), 2017 5th International Workshop on (pp. 1-6). IEEE.

      [72] Khalind, O., & Aziz, B. (2015, May). A better detection of 2LSB steganography via standard deviation of the extended pairs of values. In Mobile Multimedia/Image Processing, Security, and Applications 2015 (Vol. 9497, p. 94970E). International Society for Optics and Photonics.

      [73] Lerch-Hostalot, D., & Megías, D. (2016). Unsupervised steganalysis based on artificial training sets. Engineering Applications of Artificial Intelligence, 50, 45-59. https://doi.org/10.1016/j.engappai.2015.12.013.

      [74] Veena, S. T., & Arivazhagan, S. (2018). Quantitative steganalysis of spatial LSB based stego images using reduced instances and features. Pattern Recognition Letters, 105, 39-49. https://doi.org/10.1016/j.patrec.2017.08.01.

      [75] Li, B., He, J., Huang, J., & Shi, Y. Q. (2011). A survey on image steganography and steganalysis. Journal of Information Hiding and Multimedia Signal Processing, 2(2), 142-172.

      [76] Fridrich, J., & Kodovsky, J. (2012). Rich models for steganalysis of digital images. IEEE Transactions on Information Forensics and Security, 7(3), 868-882. https://doi.org/10.1109/TIFS.2012.2190402.

      [77] Kodovský, J., & Fridrich, J. (2012, February). Steganalysis of JPEG images using rich models. In Media Watermarking, Security, and Forensics 2012 (Vol. 8303, p. 83030A). International Society for Optics and Photonics.

      [78] Pevný, T., Fridrich, J. J., & Ker, A. D. (2012). From blind to quantitative Steganalysis. IEEE Trans. Information Forensics and Security, 7(2), 445-454. https://doi.org/10.1109/TIFS.2011.2175918.

      [79] Friedman, J. H. (2001). Greedy function approximation: a gradient boosting machine. Annals of statistics, 1189-1232. https://doi.org/10.1214/aos/1013203451.

      [80] Diyanat, A., Farhat, F., & Ghaemmaghami, S. (2011, November). Image steganalysis based on SVD and noise estimation: Improve sensitivity to spatial LSB embedding families. In TENCON 2011-2011 IEEE Region 10 Conference (pp. 1266-1270). IEEE.

      [81] Ker, A. D. (2004, June). Quantitative evaluation of pairs and RS steganalysis. In Security, Steganography, and Watermarking of Multimedia Contents VI (Vol. 5306, pp. 83-98). International Society for Optics and Photonics. https://doi.org/10.1117/12.526720.

      [82] L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification and Regression Trees. Wadsworth and Brooks, Monterey, CA, 1984.

      [83] Foi, A. (2009). Clipped noisy images: Heteroskedastic modeling and practical denoising. Signal Processing, 89(12), 2609-2629. https://doi.org/10.1016/j.sigpro.2009.04.035.

      [84] L. Fillatre. Adaptive steganalysis of least significant bit replacement in grayscale natural images. Signal Processing, IEEE Transactions on, 60(2):556 – 569, February 2012. https://doi.org/10.1109/TSP.2011.2174231.

      [85] Ker, A. D., & Böhme, R. (2008, March). Revisiting weighted stego-image steganalysis. In Security, Forensics, Steganography, and Watermarking of Multimedia Contents X (Vol. 6819, p. 681905). International Society for Optics and Photonics. https://doi.org/10.1117/12.766820.

      [86] Li, B., Huang, J., & Shi, Y. Q. (2008, March). Textural features based universal steganalysis. In Security, Forensics, Steganography, and Watermarking of Multimedia Contents X (Vol. 6819, p. 681912). International Society for Optics and Photonics. https://doi.org/10.1117/12.765817.

      [87] Pevny, T., Bas, P., & Fridrich, J. (2010). Steganalysis by subtractive pixel adjacency matrix. IEEE Transactions on information Forensics and Security, 5(2), 215-224. https://doi.org/10.1109/TIFS.2010.2045842.

      [88] Cogranne, R., Zitzmann, C., Retraint, F., Nikiforov, I., Fillatre, L., & Cornu, P. (2012, May). Statistical detection of LSB matching using hypothesis testing theory. In International Workshop on Information Hiding (pp. 46-62). Springer, Berlin, Heidelberg.

      [89] Pevny, T., Bas, P., & Fridrich, J. (2010). Steganalysis by subtractive pixel adjacency matrix. IEEE Transactions on information Forensics and Security, 5(2), 215-224. https://doi.org/10.1109/TIFS.2010.2045842.

      [90] Yu, X., & Babaguchi, N. (2008, June). Weighted stego-image based steganalysis in multiple least significant bits. In Multimedia and Expo, 2008 IEEE International Conference on (pp. 265-268). IEEE.

      [91] Lyu, S., & Farid, H. (2002, October). Detecting hidden messages using higher-order statistics and support vector machines. In International Workshop on Information Hiding (pp. 340-354). Springer, Berlin, Heidelberg.

      [92] Xuan, G., Shi, Y. Q., GAO, J., Zou, D., Yang, C., Zhang, Z., & Chen, W. (2005, June). Steganalysis based on multiple features formed by statistical moments of wavelet characteristic functions. In International Workshop on Information Hiding (pp. 262-277). Springer, Berlin, Heidelberg. https://doi.org/10.1007/11558859_20.

      [93] Shi, Y. Q., Xuan, G., Yang, C., GAO, J., Zhang, Z., Chai, P. ... & Chen, W. (2005, April). Effective steganalysis based on statistical moments of wavelet characteristic function. In Information Technology: Coding and Computing, 2005. ITCC 2005. International Conference on (Vol. 1, pp. 768-773). IEEE.

      [94] Lin, J. Q., & Zhong, S. P. (2009, July). JPEG image steganalysis method based on binary similarity measures. In Machine Learning and Cybernetics, 2009 International Conference on (Vol. 4, pp. 2238-2243). IEEE.

      [95] DOMAIN, W. T. I. S. (2018). A REVIEW AND OPEN ISSUES OF DIVERSE TEXT WATERMARKING TECHNIQUES IN SPATIAL DOMAIN. Journal of Theoretical and Applied Information Technology, 96(17).


 

View

Download

Article ID: 16004
 
DOI: 10.14419/ijet.v7i4.16004




Copyright © 2012-2015 Science Publishing Corporation Inc. All rights reserved.