Measurement and Experimental Testing of Models for the Estimation of HourlySolar Radiation on Vertical Surfaces at Mexico City

  • Authors

    • Liliana Y. Maldonado Sánchez
    • Mauro Valdés Barrón
    • Jesús Polo Martínez
    • Nuria Martín Chivelet
    2018-07-21
    https://doi.org/10.14419/ijet.v7i3.11.15948
  • Evaluation of Models, Global Solar Irradiation, Global Vertical Irradiance, Sustainable Buildings Vertical Surfaces.
  • This paper presents the results of measuring global solar irradiation in horizontal and vertical surfaces North, South, East and West with the aim to determine the energy loads in which buildings are subjected to in Mexico city, in order to provide the necessary information firstly, for planning and design of new buildings and secondly, for cost benefit analysis in the adaptation of already built structures. Solar irradiation on vertical surfaces plays a major role to determine thermal and energy performance of a building especially important for analysis of active and passive solar systems. A full year data of measurements (2014) have been compiled and analyzed. In addition, the hourly data of this horizontal and vertical measurements were compared with hourly radiation data calculated by means of two different models: the isotropic sky model (Hottel and Woertz model) and one anisotropic sky model (Perez model).  The performance of the models were assessed by two common statistical parameters: the relative root mean square error (RMSE) and the mean bias error (MBE). Perez model presented better performance through the year in north, east and west façades, and the isotropic model in south façade.

     

  • References

    1. [1] Li, D. and Lam, J. (2000). Vertical solar radiation and daylight illuminance data for Hong Kong. Lighting Research and Technology, 32(2), 93-98.

      [2] Galindo, E. I., Cifuentes, N. G., & Universidad Nacional AutoÌnoma de MeÌxico. (1996). IrradiacioÌn solar global en la RepuÌblica Mexicana: Valores, horarios medios. MeÌxico: UNAM, Programa Universitario de Energia. CoordinacioÌn de la InvestigacioÌn CientiÌfica, Universidad Nacional AutoÌnoma de MeÌxico.

      [3] Loutzenhiser, P., Manz, H., Felsmann, C., Strachan, P., Frank, T. and Maxwell, G. (2007). Empirical validation of models to compute solar irradiance on inclined surfaces for building energy simulation. Solar Energy, 81(2), 254-267.

      [4] Muneer, T. and Angus, R. (1993). Daylight illuminance models for the United Kingdom. Lighting Research and Technology, 25(3), 113-123.

      [5] Liu, B.Y.H. y Jordan, R.C. (1961). Daily insolation on surfaces tilted toward the equator. ASHRAE J. 3(10), 53-59.

      [6] Perez, R., Ineichen, P., Seals, R., Michalsky, J. and Stewart, R. (1990) Modeling Daylight Availability and Irradiance Components from Direct and Global Irradiance. Solar Energy, 44, 271-289.

      [7] Muneer, T., Gueymard, C., Kambezidis, H., & Muneer, T. (2004). Solar radiation and daylight models: (with software available from companion web site). Oxford: Elsevier Butterworth Heinemann.

      [8] McArthur, L.B.J. (2004). Baseline Surface Radiation Network (BSRN): Operations Manual (Version 2.1). Climate Research.

      [9] A., R., M., W., A., O., E. G., D., C. N., L., & T., Z. (2011). Assessment of BSRN radiation records for the computation of monthly means. Atmospheric Measurement Techniques, Vol 4, Iss 2, Pp 339-354

      [10] Li, D., Lam, J. and Lau, C. (2002). A new approach for predicting vertical global solar irradiance. Renewable Energy, 25(4), pp.591-606.

      [11] Cucumo, M., Marinelli, V. and Oliveti, G. (1994). Ingegneria solare. Bologna: Pitagora editrice.

      [12] Muneer, T. (1990). Solar radiation model for Europe. Building Services Engineering Research and Technology, 11(4), 153-163.

      [13] Abdelrahman, M., & Elhadidy, M. (1986). Comparison of calculated and measured values of total radiation on tilted surfaces in Dhahran, Saudi Arabia. Solar Energy, 37(3), 239-243.

      [14] Koronakis, P. (1986). On the choice of the angle of tilt for south facing solar collectors in the Athens basin area. Solar Energy, 36(3),217-225.

      [15] Perez, R., Seals, R., Ineichen, P., Stewart, R. and Menicucci, D. (1987). A new simplified version of the perez diffuse irradiance model for tilted surfaces. Solar Energy, 39(3),221-231.

      [16] Gueymard, C. (1987). An anisotropic solar irradiance model for tilted surfaces and its comparison with selected engineering algorithms. Solar Energy, 38(5), 367-386.

      [17] Louche, A., Notton, G., Poggi, P. and Simonnot, G. (1991). Correlations for direct normal and global horizontal irradiation on a French Mediterranean site. Solar Energy, 46(4), pp.261-266.

      [18] Gueymard, C. (1987). An anisotropic solar irradiance model for tilted surfaces and its comparison with selected engineering algorithms. Solar Energy, 38(5), 367-386.

      [19] HC, Hottel & BB, Woertz. (1942). Performance of flat-plate solar-heat collectors. Trans. ASME (Am. Soc. Mech. Eng.); (United States),64, 91.

      [20] Perez, R., Ineichen, P., Seals, R., Michalsky, J. and Stewart, R. (1990). Modeling daylight availability and irradiance components from direct and global irradiance. Solar Energy, 44(5), 271-289.

      [21] Robledo L., Soler A. (2003), Energy Conversion Manage, 44 (15), 2455–2469.

      [22] Martin Chivelet, Nuria. (2016). Photovoltaic potential and land-use estimation methodology. Energy. 94. 233-242.

      [23] Caamaño-Martín, Estefanía & Higueras Garcia, Ester & Neila, Javier & Useros, I & Masa-Bote, D & Tortora, Fiorella & Díaz-Palacios, S & Marrero, X & Alonso, A & Saade, A & Jedliczka, M & Miquel, C & de l’Epine, M & Willdbrett, E & Kjellsson, E & Cornander, A & Fernandes, J. (2012). Solar potential calculation at city and district levels. WIT Transactions on Ecology and the Environment. 155, 675-685.

      [24] Verso, A & Martín Avila, Ana María & Amador Guerra, Julio & Dominguez, Javier. (2015). GIS-based method to evaluate the photovoltaic potential in the urban environments: The particular case of Miraflores de la Sierra. Solar Energy. 117. 236-245.

      [25] Duffie, J. and Beckman, W. (2013). Solar engineering of thermal processes. Hoboken, N.J.: Wiley.

      [26] Muneer, T., Alnaser, W. and Fairooz, F. (2007). The insolation on vertical surface having different directions in the Kingdom of Bahrain. Desalination, 209(1-3), 269-274.

  • Downloads

  • How to Cite

    Y. Maldonado Sánchez, L., Valdés Barrón, M., Polo Martínez, J., & Martín Chivelet, N. (2018). Measurement and Experimental Testing of Models for the Estimation of HourlySolar Radiation on Vertical Surfaces at Mexico City. International Journal of Engineering & Technology, 7(3.11), 129-143. https://doi.org/10.14419/ijet.v7i3.11.15948