Solar radiation map of Jordan governorates

  • Authors

    • Saad S. Alrwashdeh Mechanical Engineering Department, Faculty of Engineering, Mutah University, P.O Box 7, Al-Karak 61710 Jordan
    • Falah M. Alsaraireh Mechanical Engineering Department, Faculty of Engineering, Mutah University, P.O Box 7, Al-Karak 61710 Jordan
    • Mohammad A. Saraireh Mechanical Engineering Department, Faculty of Engineering, Mutah University, P.O Box 7, Al-Karak 61710 Jordan
    2018-08-04
    https://doi.org/10.14419/ijet.v7i3.15557
  • Energy, Electrical Demand, Solar Radiation MAP.
  • The solar energy potential in Jordan is enormous as it lies within the solar belt of the world with average solar radiation between 4 and 8 KWh/m2, which implies a potential of 1400-2300 GWh per year annually. Electricity demand in Jordan plays a significant role in the high amount of energy consumption to cover the needs of heating, cooling, lighting, etc. For that, the availability of the solar radiation infor-mation becomes essential to help in the design and building of the solar energy application. In this study, a solar radiation map is provided of all Jordan governorates.

     


  • References

    1. [1] Al-Najideen, M.I. and S.S. Alrwashdeh, Design of a solar photovoltaic system to cover the electricity demand for the faculty of Engineering- Mu'tah University in Jordan. Resource-Efficient Technologies, 2017. 3(4): p. 440-445. https://doi.org/10.1016/j.reffit.2017.04.005.

      [2] Alsaad, M.A., Solar radiation map for Jordan. Solar & Wind Technology, 1990. 7(2): p. 267-275. https://doi.org/10.1016/0741-983X(90)90096-K.

      [3] Al-Soud, M.S. and E.S. Hrayshat, A 50 MW concentrating solar power plant for Jordan. Journal of Cleaner Production, 2009. 17(6): p. 625-635. https://doi.org/10.1016/j.jclepro.2008.11.002.

      [4] Alzoubi, H.H. and A.A. Alshboul, Low energy architecture and solar rights: Restructuring urban regulations, view from Jordan. Renewable Energy, 2010. 35(2): p. 333-342. https://doi.org/10.1016/j.renene.2009.06.017.

      [5] Alrwashdeh, S.S., Assessment of Photovoltaic Energy Production at Different Locations in Jordan. International Journal of Renewable Energy Research 2018. 8(2).

      [6] Alrwashdeh, S.S., Map of Jordan governorates wind distribution and mean power density. International Journal of Engineering & Technology, 2018. 7(3): p. 1495-1500. https://doi.org/10.14419/ijet.v7i3.14326.

      [7] Alrwashdeh, S.S., Comparison among Solar Panel Arrays Production with a Different Operating Temperatures in Amman-Jordan. International Journal of Mechanical Engineering and Technology, 2018 9(6): p. 420–429.

      [8] Alrwashdeh, S.S., et al., Neutron radiographic in operando investigation of water transport in polymer electrolyte membrane fuel cells with channel barriers. Energy Conversion and Management, 2017. 148 p. 604-610. https://doi.org/10.1016/j.enconman.2017.06.032.

      [9] Alrwashdeh, S.S., et al., In Operando Quantification of Three-Dimensional Water Distribution in Nanoporous Carbon-Based Layers in Polymer Electrolyte Membrane Fuel Cells. ACS Nano, 2017. 11(6): p. 5944-5949. https://doi.org/10.1021/acsnano.7b01720.

      [10] Ammari, H.D., S.S. Al-Rwashdeh, and M.I. Al-Najideen, Evaluation of wind energy potential and electricity generation at five locations in Jordan. Sustainable Cities and Society, 2015. 15: p. 135-143. https://doi.org/10.1016/j.scs.2014.11.005.

      [11] Saad S. Alrwashdeh, et al., Investigation of Water Transport in Newly Developed Micro Porous Layers for Polymer Electrolyte Membrane Fuel Cells. Applied Microscopy, 2017. 47(3): p. 101-104. https://doi.org/10.9729/AM.2017.47.3.101.

      [12] Saad S. Alrwashdeh, et al., Improved Performance of Polymer Electrolyte Membrane Fuel Cells with Modified Microporous Layer Structures. Energy Technology, 2017. 5(9): p. 1612-1618. https://doi.org/10.1002/ente.201700005.

      [13] Alrwashdeh, S.S., et al., Investigation of water transport dynamics in polymer electrolyte membrane fuel cells based on high porous micro porous layers. Energy, 2016. 102 p. 161-165. https://doi.org/10.1016/j.energy.2016.02.075.

      [14] Beckman, J.A.D.a.W.A., Solar Engineering of Thermal Processes. Fourth Edition ed. Soalr Energy.2013, Hoboken, New Jersey: John Wiley & Sons, Inc.

      [15] Bahadori, A. and C. Nwaoha, A review on solar energy utilisation in Australia. Renewable and Sustainable Energy Reviews, 2013.18: p. 1-5. https://doi.org/10.1016/j.rser.2012.10.003.

      [16] 1Demain, C., M. Journée, and C. Bertrand, Evaluation of different models to estimate the global solar radiation on inclined surfaces. Renewable Energy, 2013.50 p. 710-721.

      [17] El-Sebaii, A.A., et al., Global, direct and diffuse solar radiation on horizontal and tilted surfaces in Jeddah, Saudi Arabia. Applied Energy, 2010. 87(2): p. 568-576. https://doi.org/10.1016/j.apenergy.2009.06.032.

      [18] Good, C., I. Andresen, and A.G. Hestnes, Solar energy for net zero energy buildings – A comparison between solar thermal, PV and photovoltaic–thermal (PV/T) systems. Solar Energy, 2015. 122. p. 986-996. https://doi.org/10.1016/j.solener.2015.10.013.

      [19] Hoffmann, W., PV solar electricity industry: Market growth and perspective. Solar Energy Materials and Solar Cells, 2006.90(18–19): p. 3285-3311.

      [20] Schibuola, L., M. Scarpa, and C. Tambani, Calculation procedure to improve the assessment of photovoltaic generation in solar maps. Energy Procedia, 2017.122: p. 475-480. https://doi.org/10.1016/j.egypro.2017.07.295.

      [21] MacDougall, H., S. Tomosk, and D. Wright, Geographic maps of the impact of government incentives on the economic viability of solar power. Renewable Energy, 2018.122: p. 497-506. https://doi.org/10.1016/j.renene.2017.12.108.

      [22] Kanters, J., M. Wall, and E. Kjellsson, the Solar Map as a Knowledge Base for Solar Energy Use. Energy Procedia, 2014.48 p. 1597-1606.

      [23] Pevtsov, A.A., L. Bertello, and P. MacNeice, Effect of uncertainties in solar synoptic magnetic flux maps in modeling of solar wind. Advances in Space Research, 2015.56 (12): p. 2719-2726.

      [24] Kanters, J. and M. Wall, A planning process map for solar buildings in urban environments. Renewable and Sustainable Energy Reviews, 2016.57: p. 173-185. https://doi.org/10.1016/j.rser.2015.12.073.

      [25] Besarati, S.M., et al., The potential of harnessing solar radiation in Iran: Generating solar maps and viability study of PV power plants. Renewable Energy, 2013.53: p. 193-199. https://doi.org/10.1016/j.renene.2012.11.012.

      [26] Munzhedzi, R. and A.B. Sebitosi, Redrawing the solar map of South Africa for photovoltaic applications. Renewable Energy, 2009. 34(1): p. 165-169. https://doi.org/10.1016/j.renene.2008.03.023.

      [27] Badran, O.O., Study in industrial applications of solar energy and the range of its utilization in Jordan. Renewable Energy, 2001. 24(3–4): p. 485-490. https://doi.org/10.1016/S0960-1481(01)00032-5.

      [28] Huang, B.J., et al., Solar cell junction temperature measurement of PV module. Solar Energy, 2011. 85(2): p. 388-392. https://doi.org/10.1016/j.solener.2010.11.006.

      [29] Khahro, S.F., et al., Evaluation of solar energy resources by establishing empirical models for diffuse solar radiation on tilted surface and analysis for optimum tilt angle for a prospective location in southern region of Sindh, Pakistan. International Journal of Electrical Power & Energy Systems, 2015.64: p. 1073-1080. https://doi.org/10.1016/j.ijepes.2014.09.001.

      [30] Vougioukalakis, G.C., et al., Contributions to the development of ruthenium-based sensitizers for dye-sensitized solar cells. Coordination Chemistry Reviews, 2011 255 (21–22): p. 2602-2621. https://doi.org/10.1016/j.ccr.2010.11.006.

      [31] Hamdan, M.A., Solar radiation data for amman. Applied Energy, 1994. 47(1): p. 87-96. https://doi.org/10.1016/0306-2619(94)90033-7.

      [32] Hijazin, M.I., The diffuse fraction of hourly solar radiation for Amman/Jordan. Renewable Energy, 1998. 13(2): p. 249-253. https://doi.org/10.1016/S0960-1481(97)00082-7.

      [33] Alsaad, M.A., Characteristic distribution of global solar radiation for Amman, Jordan. Solar & Wind Technology, 1990. 7(2): p. 261-266. https://doi.org/10.1016/0741-983X(90)90095-J.

      [34] El-Kassaby, M.M., Monthly and daily optimum tilt angle for south facing solar collectors; theoretical model, experimental and empirical correlations. Solar & Wind Technology, 1988. 5(6): p. 589-596. https://doi.org/10.1016/0741-983X(88)90054-9.

      [35] Le Roux, W.G., Optimum tilt and azimuth angles for fixed solar collectors in South Africa using measured data. Renewable Energy, 2016.96 Part a p. 603-612.

      [36] Moghadam, H. and S.M. Deymeh, Determination of optimum location and tilt angle of solar collector on the roof of buildings with regard to shadow of adjacent neighbors. Sustainable Cities and Society, 2015.14 p. 215-222.

    2. font-family:"Calibri",sans-serif;mso-ascii-theme-font:minor-latin;mso-fareast-font-family:
    3. Calibri;mso-fareast-theme-font:minor-latin;mso-hansi-theme-font:minor-latin;
    4. mso-bidi-font-family:Arial;mso-bidi-theme-font:minor-bidi;mso-ansi-language:
    5. EN-US;mso-fareast-language:EN-US;mso-bidi-language:AR-SA'>
    6. style='mso-element:field-end'>
  • Downloads

  • How to Cite

    S. Alrwashdeh, S., M. Alsaraireh, F., & A. Saraireh, M. (2018). Solar radiation map of Jordan governorates. International Journal of Engineering & Technology, 7(3), 1664-1667. https://doi.org/10.14419/ijet.v7i3.15557