Modification & optimization of mechanical properties of bio fibers blended composites
DOI:
https://doi.org/10.14419/ijet.v7i2.33.15501Published:
2018-06-08Keywords:
Palmyra-Luffa Fibers, Surface Treatment, Chemical Resistance Test, Mechanical Tests.Abstract
ABSTRACT: The synthetic fibers used possess some major hindrance with respect to machine abrasion, recyclability, non-renewable, environmentally safe, energy usage, & health problems. In the present work 10%, unsaturated polyester toughened with 90 % Epoxy is used as matrix blend. The Bio fibres used are Palmyra-Luffa fibres & the bio-composites were fabricated by reinforcing bio fibres with matrix blend using hand lay-up technique. The main intension of the work is to monitor the quantity of bio fibres for the manufacturing of high strength to weight & low cost natural fibers reinforced hybrid bio-composites for the automobile and manufacturing, marine and other industrial applications. The changes in the values of various mechanical properties like; impact, flexural and compressive properties at different quantity of untreated and alkali treated palmyra-Luffa fibers reinforced blended bio-composites have investigated. The changes in the various mechanical properties with respect to quantity of fiber content without and with surface modification have investigaed. At 40% quantity of surface modified palmyra-Luffa fibers the values of mechanical properties have found to be maximum when compared with 10%, 20%, 30%, and 50% quantity of surface modified composites and other untreated bio-composites. Chemical resistance test reveals that resistance towards various chemical was also improved appreciably for all the chemicals excluding carbon tetrachloride & toluene.
References
[1] Harani, H., Fellahi, S. and Bakar, M., Toughening of epoxy resin using hydroxyl- terminated polyester, Journal of Applied Polymer Science, 71,29-38 (1999).
[2] Park, S.J., Park, W.B. and Lee, J.R., Roles of Unsaturated polyester in the epoxy matrix system, Polym. J., 31, 28-31(1999)
[3] Mohanty, A.K., Misra, M.and Drzal, L.T., Surface modifications of natural fibres and performance of resulting bio-composites, Composite Interfaces, 8(5), 313-343 (2001).
[4] Varada Rajulu, A., Ganga Devi. and Babu Rao, G., Miscibility studies of epoxy/unsaturated polyester resin blend in chloroform by viscosity, ultrasonic velocity, and refractive index methods, J. App. Polymer Sci., (89), 2970–2972, (2003).
[5] Sapuan, S.M., Leenie, A., Harimi, M. and Beng, Y.K., Mechanical properties of woven banana fibre reinforced epoxy composites, Materials and Design, 27(8), 689-693 (2006).
[6] Pothan, L.A., Groenikx, G. and Sabu Thomas., The role of fibre/matrix interactions on the Dynamic Mechanical properties of chemically modified composites, Composites Part a, 37, 1260-1269 (2006).
[7] Edeerozey, A.M., Akil, H.M., Azhar, A.B. and Ariffin, M.Z., Chemical modification of kenaf fibres, Material Letters, 61, 2023-2025 (2007).
[8] Kaith, B.S., Singha, A.S., Sanjeev, K. and Susheel, K., Mercerization of flax fibre improves the mechanical properties of fibre-reinforced composites, Inter. J. Polym. Mater. 57(1), 54–72 (2008).
[9] Bessadok, A, Marais, S, Roudesli, S., Lixon, C. and Metayor, M., Influence of chemical modifications on water sorption and mechanical properties of Agave fibre, Composites Part A, 39, 29-45 (2008).
[10] T. Yu, J. Ren, S. Li, H. Yuan, and Y. Li, "Effect of fibre surface-treatments on the properties of poly (lactic acid)/ramie composites,"Composites Part A: Applied Science and Manufacturing, vol. 41, pp. 499-505, 4// 2010.
[11] S. Kalia, B. S. Kaith, and I. Kaur, "Pretreatments of natural fibres and their application as reinforcing material in polymer composites— A review," Polymer Engineering & Science, vol. 49, pp. 1253-1272, 2009.
How to Cite
License
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution Licensethat allows others to share the work with an acknowledgement of the work''s authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal''s published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Accepted 2018-07-13
Published 2018-06-08