Synthesizing Zro2 Nanoparticle as a Catalyst Through Thermal Decomposition of Phenol-Zirconium Complexes in Order to Degradation of Harmful Organic Substances Under UV Light

  • Authors

    • Yahya Absalan
    • Olga. V. Kovalchukova
    2018-04-20
    https://doi.org/10.14419/ijet.v7i2.23.15336
  • ZrO2, ligand, phenol, catalyst, complex, nanoparticle
  • This research was focused on synthesizing 3 zirconium complexes with phenol ligand and preparing ZrO2 from synthesized complex through the method of thermal decomposition was the result of the work. Nanoparticles of ZrO2 were synthesized after the complexes were decomposed in autoclaves at varies temperatures according to the different ligands.

    FT-IR spectroscopy, UV-Vis spectroscopy, chemical analyzing and metal analyzing were used for investigating the complex as analyzing methods.

    Furthermore, for the obtained nanoparticle, XRD, UV–Vis, FESEM and EDAX analyses were chosen for analyzing. Based on the result, synthesized ZrO2 are able to remove harmful organic compounds under UV light.

     

     

  • References

    1. [1]A.S. H.T. Muhammad Saada, Jawariya Khanb, Uzma Hameedb, Ultrason. Sonochem. 34 (2017) 600–608.

      [2]M.A.M.-M. V.H.-M. I.A. Aguayo- Villarreal, N.A. Rangel-Vázquez, J. Mol. Liq. 196 (2014) 326 – 333.

      [3]C.Y. H.S. Fuat Güzel, Gülbahar Akkaya Sayğılı, Filiz Koyuncu, J. Clean. Prod. (2017).

      [4]J. Saini, V.K. Garg, R.K. Gupta, N . Kataria, J. Environ. Chem. Eng. 5 (2017) 884–892. doi:10.1016/j.jece.2017.01.012.

      [5]S. Aliouche, K. Djebbar, T. Sehili, Water Treat. 3994 (2015). doi:10.1080/19443994.2015.1090915.

      [6]A. Cruz-Rizo, S. Guti??rrez-Granados, R. Salazar, J.M. Peralta-Hern??ndez, Sep. Purif. Technol. 172 (2017) 296–302. doi:10.1016/j.seppur.2016.08.029.

      [7]E. Sergeeva, J. Kopilov, I. Goldberg, M. Kol, Inorg. Chem. 49 (2010) 3977–3979. doi:10.1021/ic100390x.

      [8]Y. Li, K. Zhao, C. Redshaw, C. Road, B.A.M. I, T.A. Hanna, F. Worth, PATAI’s Chem. Funct. Groups. (2014). doi:10.1002/9780470682531.pat0616.

      [9]S.J.D. Marco Coletta, Euan K. Brechin, 2016. https://link.springer.com/chapter/10.1007/978-3-319-31867-7_25.

      [10]I.S.A. and A.I.K. D. R. Sharafutdinova, O. B. Bazanova, A. A. Murav´ev, S. E. Solov´eva, Russ. Chem. Bull. Int. Ed. 64 (2015) 1823–1828.

      [11]C. Redshaw, D. Homden, D.L. Hughes, A. Wright, M.R.J. Elsegood, Dalt. Trans. (2009) 1231–1242. doi:10.1039/b813313a.

      [12]T.M.S. A. Vigalok, Adv. Mater. (2002) 368–371. doi:10.1002/1521-4095(20020304)14:5<368::AID-ADMA368>3.0.CO;2-I.

      [13]E.K.B. Georgios Karotsis, Chemie Int. Ed. 48 (2009) 9928–9931. doi:10.1002/anie.200905012.

      [14]S.J.D. and E.K.B. Sergio Sanz, Kerry Ferreira, Ruaraidh D. McIntosh, Chem. Commun. 47 (2011) 9042–9044. doi:10.1039/c1cc13055b.

      [15]E. Bukhaltsev, L. Frish, Y. Cohen, A. Vigalok, Org. Lett. 7 (2005) 5123–5126. doi:10.1021/ol051741d CCC.

      [16]R.V.S. G A Evtugyn, E E Stoikova, Russ. Chem. Rev. 79 (2010) 1071–1097. doi:10.1070/RC2010v079n12ABEH004107.

      [17]N.D. Bahram Mokhtari, Kobra Pourabdollah, J Incl Phenom Macrocycl Chem. 69 (2011) 1–55. doi:10.1007/s10847-010-9848-7.

      [18]K.P. Bahram Mokhtari, J. Coord. Chem. 64 (2011) 3081–3091. doi:10.1080/00958972.2011.613462.

      [19]N.D. Bahram Mokhtari, Kobra Pourabdollah, Chromatographia. 73 (2011) 829–847. doi:10.1007/s10337-011-1954-1.

      [20]N.D. Bahram Mokhtari, Kobra Pourabdollah, J Radioanal Nucl Chem. 287 (2011) 921–934. doi:10.1007/s10967-010-0881-1.

      [21]D.M. Roundhill, I.B. Solangi, S. Memon, M.I. Bhanger, M. Yilmaz, Pak. J. Anal. Environ. Chem. 10 (2009) 1–13.

      [22]S.P. (Founding E. Jacob Zabicky (Editor), Zvi Rappoport (Series Editor), Joel F. Liebman (Series Editor), Ilan Marek (Series Editor), The Chemistry of Metal Phenolates, Wiley Authenticity Guarantee, United States, 2014.

      [23]V. Arora, H.M. Chawla, S.P. Singh, ARKAT USA, Inc. 2007 (2007) 172–200. http://pdf.easechem.com/pdf/21/4bca107e-b2df-4aa2-a995-db3c15b02f94.pdf.

      [24]D.K.S. and K.N.R. Chengbao Ni, Chem. C Ommun. 47 (2011) 6392–6394. doi:10.1039/c1cc11329a.

      [25]C. Boulho, H.S. Zijlstra, A. Hofmann, P.H.M. Budzelaar, S. Harder, Chem. - A Eur. J. 22 (2016) 17450–17459. doi:10.1002/chem.201602674.

      [26]G. Mouchaham, L. Cooper, N. Guillou, C. Martineau, E. Elkaïm, S. Bourrelly, P.L. Llewellyn, C. Allain, G. Clavier, C. Serre, T. Devic, Angew. Chemie - Int. Ed. 54 (2015) 13297–13301. doi:10.1002/anie.201507058.

      [27]A.J. Howarth, Y. Liu, P. Li, Z. Li, T.C. Wang, J.T. Hupp, O.K. Farha, Nat. Rev. Mater. (2016) 15018. doi:10.1038/natrevmats.2015.18.

      [28]R. Yu, F.-S. Xiao, D. Wang, J. Sun, Y. Liu, G. Pang, S. Feng, S. Qiu, R. Xu, C. Fang, Catal. Today. 51 (1999) 39–46. doi:10.1016/S0920-5861(99)00006-1.

      [29]S. Khare, P. Shrivastava, R. Chokhare, J.S. Kirar, S. Parashar, J. Porous Mater. 24 (2017) 855–866. doi:10.1007/s10934-016-0325-6.

      [30]E. Le Roux, 2015.

      [31]M.D. Jones, 2015.

      [32]S. Chen, X. Zhang, H. Ma, Y. Lu, Z. Zhang, H. Li, Z. Lu, N. Cui, Y. Hu, J. Organomet. Chem. 690 (2005) 4184–4191. doi:10.1016/j.jorganchem.2005.06.029.

      [33]S. Barroso, P. Adão, A.M. Coelho, J.C. Pessoa, A.M. Martins, J. Mol. Catal. A Chem. 412 (2016) 107–116. doi:10.1016/j.molcata.2015.11.021.

      [34]E. Despagnet-Ayoub, M.K. Takase, L.M. Henling, J.A. Labinger, J.E. Bercaw, Organometallics. 34 (2015) 4707–4716. doi:10.1021/acs.organomet.5b00472.

      [35]M.K. and J.O. Andreas Sauer, Andreas Kapelski, Christophe Fliedel, Samuel Dagorne, J. Dalt. Trans. 42 (2013) 9007–9023. doi:10.1039/C3DT00010A.

      [36]J.-C. Buffet, A.N. Martin, M. Kol, J. Okuda, Polym. Chem. 2 (2011) 2378. doi:10.1039/c1py00266j.

  • Downloads

  • How to Cite

    Absalan, Y., & V. Kovalchukova, O. (2018). Synthesizing Zro2 Nanoparticle as a Catalyst Through Thermal Decomposition of Phenol-Zirconium Complexes in Order to Degradation of Harmful Organic Substances Under UV Light. International Journal of Engineering & Technology, 7(2.23), 472-474. https://doi.org/10.14419/ijet.v7i2.23.15336