Biomechanics of hip joint: a systematic review

  • Authors

    • Chethan KN Assistant Professor, Department of Aeronautical & Automobile Engineering, Manipal Institute of Technology
    • Shyamasunder Bhat N Professor,Department of Orthopedics, Kasturba Medical College
    • Satish shenoy B Professor, Department of Aeronautical & Automobile Engineering, Manipal Institute of Technology
    2018-08-10
    https://doi.org/10.14419/ijet.v7i3.15231
  • Hip Joint, Biomechanics, Finite Element Analysis, Joint Reaction Force, Two-Dimensional Analysis, Bones.
  • Hip joint is the second largest joint in human after knee joint. It is associated with different types of motion which helps in the movement of human body and provide stability. Biomechanics involves the study of movement of living organism. It is important to know and understand the basics of biomechanics of hip joint to define the movement of hip joint along with its load carrying capacity in different day to day activities. Many researchers are worked to know the basics biomechanics of hip joint both in in-vitro and in- vivo conditions. In this paper, it has been reported in detail to know the different biomechanical aspects involved in the hip joint during different movement and also different biomaterials used in the hip joint prosthesis. It is majorly focused on load transmitting by hip joint by upper body to lower body in different activities such as walking, running, stumbling etc. So, these basic understanding helps to understand effectively the joint reaction forces which is acting on hip joint while designing new hip joint prosthesis.

     

     

  • References

    1. [1] Duane Knudson, Fundamentals of Biomechanics. Springer, 2007.

      [2] M. Laurence and M. A. R. Freeman, “Section of Orthopsedics Biomechanics,†October, vol. 59, no. October, pp. 31–36, 1966.

      [3] T. W. Lu and C. F. Chang, “Biomechanics of human movement and its clinical applications,†Kaohsiung J. Med. Sci., vol. 28, no. 2 Suppl., 2012.

      [4] C. Li, J. Jiang, H. Dong, and K. Zhao, “Computational modeling and validation of human nasal airflow under various breathing conditions,â€J.Biomech.,vol.64,pp.59–68,2017. https://doi.org/10.1016/j.jbiomech.2017.08.031.

      [5] J. Perry, “Anatomy and Biomechanics of the Hindfoot,†Clin. Orthop. Relat. Res., vol.no. 177, p. 9-15, 1983.

      [6] B. J. Eckenrode and M. J. Kelley, “Clinical Biomechanics of the Shoulder Complex,†vol. 13, pp. 17–41, 2009.

      [7] G. L. Smidt, “Biomechanical analysis of knee flexion and extension.,†J. Biomech., vol. 6, no. 1, pp. 79–92, 1973. https://doi.org/10.1016/0021-9290(73)90040-7.

      [8] S. D. Masouros, A. M. J. Bull, and A. A. Amis, “Biomechanics of the knee joint,†Orthop. Trauma, vol. 24, no. 2, pp. 84–91, 2010. https://doi.org/10.1016/j.mporth.2010.03.005.

      [9] C. L. Brockett and G. J. Chapman, “Biomechanics of the ankle,†Orthop. Trauma, vol. 30, no. 3, pp. 232–238, 2016. https://doi.org/10.1016/j.mporth.2016.04.015.

      [10] K. K. Athwal, N. C. Hunt, A. J. Davies, D. J. Deehan, and A. A. Amis, “Clinical biomechanics of instability related to total knee arthroplasty,†Clin. Biomech., vol. 29, no. 2, pp. 119–128, 2014. https://doi.org/10.1016/j.clinbiomech.2013.11.004.

      [11] H. Jiang, “Static and Dynamic Mechanics Analysis on Artificial Hip Joints with Different Interface Designs by the Finite Element Method,†J. Bionic Eng., vol. 4, no. 2, pp. 123–131, 2007. https://doi.org/10.1016/S1672-6529(07)60024-9.

      [12] James A Sanfilippo and Mathew S Austin, “Implants for total hip arthroplasty,†Futur. drugs Ltd, vol. 3, no. 6, p. 769, 2006.

      [13] N. Pan, “Length of Long Bones and their Proportion to Body Height in Hindus.,†J. Anat., vol. 58, no. Pt 4, pp. 374–8, 1924.

      [14] A. A. Abdel-Wahab, K. Alam, and V. V. Silberschmidt, “Analysis of anisotropic viscoelastoplastic properties of cortical bone tissues,†J. Mech. Behav. Biomed. Mater., vol. 4, no. 5, pp. 807–820, 2011. https://doi.org/10.1016/j.jmbbm.2010.10.001.

      [15] G. M. Izzo, “Total hip replacement: structures modeling, gait analysis and report. Support for total hip replacement surgery:structures modeling, gait data analysis and report system,†Eur. J. Transl. Myol. - Basic applie Myol., vol. 22, no. 1&2, p. 53, 2012.

      [16] J. Hazrati Marangalou, K. Ito, and B. van Rietbergen, “A new approach to determine the accuracy of morphology-elasticity relationships in continuum FE analyses of human proximal femur,†J.Biomech.,vol.45,no.16,pp.2884–2892,2012. https://doi.org/10.1016/j.jbiomech.2012.08.022.

      [17] A. Stops, R. Wilcox, and Z. Jin, “Computational modelling of the natural hip: A review of finite element and multibody simulations,†Comput. Methods Biomech. Biomed. Engin., vol. 15, no. 9, pp. 963–979, 2012. https://doi.org/10.1080/10255842.2011.567983.

      [18] C. Dopico-González, A. M. New, and M. Browne, “Probabilistic finite element analysis of the uncemented hip replacement-effect of femur characteristics and implant design geometry,†J. Biomech., vol.43,no.3,pp.512–520,2010. https://doi.org/10.1016/j.jbiomech.2009.09.039.

      [19] H. Gray, “Gray’s Anatomy,†Anat. Rec., vol. 136, no. 4, pp. 505–505, 1960.

      [20] L. Mattei, F. Di Puccio, B. Piccigallo, and E. Ciulli, “Lubrication and wear modelling of artificial hip joints: A review,†Tribol. Int., vol. 44,no.5,pp.532–549,2011. https://doi.org/10.1016/j.triboint.2010.06.010.

      [21] S.-H. Woo, S. W. Suh, T. G. Jung, S.-J. Lee, D.-W. Han, and J. H. Yang, “Biomechanical assessment of a novel lengthening plate for distraction osteogenesis: A finite element study,†Biomed. Eng. Lett., vol. 6, no. 4, pp. 216–223, 2016. https://doi.org/10.1007/s13534-016-0224-4 ...

      [22] W. Yang, C. Yang, and T. Xu, “Human hip joint center analysis for biomechanical design of a hip joint exoskeleton,†Front. Inf. Technol. Electron. Eng., vol. 17, no. 8, pp. 792–802, 2016. https://doi.org/10.1631/FITEE.1500286.

      [23] W. M. Park, Y. H. Kim, K. Kim, and T. Y. Oh, “Non-destructive biomechanical analysis to evaluate surgical planning for hip joint diseases,†Int. J. Precis. Eng. Manuf., vol. 10, no. 3, pp. 127–131, 2009. https://doi.org/10.1007/s12541-009-0057-5.

      [24] K. Bessho, M; Ohnishi, I; Matsuyama, J; Matsumoto, T; Nakamura, “Prediction of strength and strain of the proximal femur,†52nd Annu. Meet. Orthop. Res. Soc., p. 224, 2000.

      [25] Z. Yosibash, A. Katz, and C. Milgrom, “Toward verified and validated FE simulations of a femur with a cemented hip prosthesis,†Med.Eng.Phys.,vol.35,no.7,pp.978–987,2013. https://doi.org/10.1016/j.medengphy.2012.09.007.

      [26] E. Schileo, L. Balistreri, L. Grassi, L. Cristofolini, and F. Taddei, “To what extent can linear finite element models of human femora predict failure under stance and fall loading configurations?,†J. Biomech., vol.47,no.14,pp.3531–3538,2014. https://doi.org/10.1016/j.jbiomech.2014.08.024.

      [27] Janne Koivumäki, Biomechanical modeling of proximal femur : development of finite element models to simulate fractures. 2013.

      [28] S. Sakamoto and M. Iguchi, “The degree of postural automaticity influences the prime movement and the anticipatory postural adjustments during standing in healthy young individuals,†Hum. Mov. Sci., vol. 60, no. April, pp. 131–138, 2018. https://doi.org/10.1016/j.humov.2018.06.002.

      [29] S. B. Mirza, D. G. Dunlop, S. S. Panesar, S. G. Naqvi, S. Gangoo, and S. Salih, “Basic Science Considerations in Primary Total Hip Replacement Arthroplasty,†Open Orthop. J., vol. 4, no. 1, pp. 169–180, 2010. https://doi.org/10.2174/1874325001004010169.

      [30] Z. Sheikh, C. Sima, and M. Glogauer, “Bone replacement materials and techniques used for achieving vertical alveolar bone augmentation,†Materials (Basel)., vol. 8, no. 6, pp. 2953–2993, 2015. https://doi.org/10.3390/ma8062953.

      [31] F. Test, “HHS Public Access,†vol. 35, no. 1, pp. 30–37, 2015.

      [32] A. L. Sabatini and T. Goswami, “Hip implants VII: Finite element analysis and optimization of cross-sections,†Mater. Des., vol. 29, no.7,pp.1438–1446,2008. https://doi.org/10.1016/j.matdes.2007.09.002.

      [33] S. M. Darwish and A. M. Al-Samhan, “Optimization of artificial hip joint parameters,†Materwiss. Werksttech., vol. 40, no. 3, pp. 218–223, 2009. https://doi.org/10.1002/mawe.200900430.

      [34] J. J. Cherian, B. H. Kapadia, S. Banerjee, J. J. Jauregui, K. Issa, and M. A. Mont, “Mechanical, anatomical, and kinematic axis in TKA: Concepts and practical applications,†Curr. Rev. Musculoskelet. Med., vol. 7, no. 2, pp. 89–95, 2014.

      [35] Q. Schiermeier, “Alignment of lower limb,†no. December, p. 78512, 2011.

      [36] Alexandra, “Lever of Human Body,†Phys. Corner, no. September 2014, pp. 1–7, 2014.

      [37] N. P. R. Soames, Anatomy and Human Movement : Structure and function. Elsevier, 2015.

      [38] Mark Karadsheh, “Joint Biomechnaics: Joint reaction force,†pp. 1–5, 2017.

      [39] D. E. Lunn, A. Lampropoulos, and T. D. Stewart, “Basic biomechanics of the hip,†Orthop. Trauma, vol. 30, no. 3, pp. 239–246, 2016. https://doi.org/10.1016/j.mporth.2016.04.014.

      [40] R. B. Martin, D. B. Burr, N. A. Sharkey, and D. P. Fyhrie, Skeletal tissue mechanics, vol. 112, no. 3. 2015.

      [41] D. B. Burr, D. P. Van Gerven, and B. L. Gustav, “Sexual dimorphism and mechanics of the human hip: A multivariate assessment,†Am. J. Phys. Anthropol., vol. 47, no. 2, pp. 273–278, 1977. https://doi.org/10.1002/ajpa.1330470207.

      [42] J. H. Challis, Biomechanics in Sport, vol. 26, no. 1. 1992.

      [43] P. F. Gomez and J. A. Morcuende, “A historical and economic perspective on Sir John Charnley, Chas F. Thackray Limited, and the early arthoplasty industry.,†Iowa Orthop. J., vol. 25, pp. 30–7, 2005.

      [44] M. N. Charles, R. B. Bourne, J. R. Davey, and S. Greenwald, “Balance of the soft parts of the hip : Importance of restoring the femoral overhang " Soft-Tissue Balancing of the Hip : The Role Of Femoral Offset Restoration ",†pp. 1–15, 2017.

      [45] M. Morlock and N. Bishop, “Biomechanics of Hip Arthroplasty,†no. January, 2011.

      [46] M. B. Cross, D. Nam, and D. J. Mayman, “Ideal Femoral Head Size in Total Hip Arthroplasty Balances Stability and Volumetric Wear,†pp. 270–274, 2012.

      [47] D. R. Chandler, R. Glousman, D. Hull, P. J. McGuire, I. S. Kim, I. C. Clarke, and A. Sarmiento, “Prosthetic hip range of motion and impingement. The effects of head and neck geometry.,†Clin. Orthop. Relat. Res., no. 166, pp. 284–291, Jun. 1982.

      [48] R. P. Levin, “An Overview of Implant Marketing,†Implant Dentistry, vol. 7, no. 1. pp. 50–54, 1998. https://doi.org/10.1097/00008505-199804000-00006.

      [49] M. Morlock and N. Bishop, “Tribology in Total Hip Arthroplasty,†no. May, 2011.

      [50] G. Bergmann, G. Deuretzbacher, M. Heller, F. Graichen, A. Rohlmann, J. Strauss, and G. N. Duda, “Hip contact forces and gait patterns from routine activities,†J. Biomech., vol. 34, no. 7, pp. 859–871, 2001. https://doi.org/10.1016/S0021-9290(01)00040-9.

      [51] W. S. S. Jee, Bone mechanics, vol. 2, no. 1. 2001.

      [52] N. W. Rydell, “Forces acting on the femoral head-prosthesis. A study on strain gauge supplied prostheses in living persons.,†Acta Orthop. Scand., vol. 37, p. Suppl 88:1-132, 1966.

      [53] G. Bergmann, G. Deuretzbacher, M. Heller, F. Graichen, A. Rohlmann, J. Strauss, and G. N. Duda, “Hip contact forces and gait patterns from routine activities.,†J. Biomech., vol. 34, no. 7, pp. 859–871, Jul. 2001. https://doi.org/10.1016/S0021-9290(01)00040-9.

      [54] G. Bergmann, F. Graichen, and A. Rohlmann, “Is staircase walking a risk for the fixation of hip implants?,†J. Biomech., vol. 28, no. 5, pp. 535–553, 1995. https://doi.org/10.1016/0021-9290(94)00105-D.

      [55] G. Bergmann, F. Graichen, and A. Rohlmann, “Hip joint loading during walking and running, measured in two patients.,†J. Biomech., vol. 26, no. 8, pp. 969–990, 1993. https://doi.org/10.1016/0021-9290(93)90058-M.

      [56] G. Bergmann, A. Bender, J. Dymke, G. Duda, and P. Damm, “Standardized loads acting in hip implants,†PLoS One, vol. 11, no. 5, pp. 1–23, 2016. https://doi.org/10.1371/journal.pone.0155612.

      [57] M. Giorgi, A. Carriero, S. J. Shefelbine, and N. C. Nowlan, “Effects of normal and abnormal loading conditions on morphogenesis of the prenatal hip joint: Application to hip dysplasia,†J. Biomech., vol. 48, no.12,pp.3390–3397,2015. https://doi.org/10.1016/j.jbiomech.2015.06.002.

      [58] I. Kaymaz, O. Bayrak, O. Karsan, A . Celik, and A. Alsaran, “Failure analysis of the cement mantle in total hip arthroplasty with an efficient probabilistic method,†Proc. Inst. Mech. Eng. Part H J. Eng. Med.,vol.228,no.4,pp.409–417,2014. https://doi.org/10.1177/0954411914529428.

      [59] E. Arbabi, S. Chegini, R. Boulic, M. Tannast, S. J. Ferguson, and D. Thalmann, “Penetration Depth Method-Novel Real-Time Strategy for Evaluating Femoroacetabular Impingement,†J. Orthop. Res., no. July, p. n/a-n/a, 2010.

      [60] C. R. Henak, C. L. Abraham, A. E. Anderson, S. A. Maas, B. J. Ellis, C. L. Peters, and J. A. Weiss, “Patient-specific analysis of cartilage and labrum mechanics in human hips with acetabular dysplasia,†Osteoarthr. Cartil., vol. 22, no. 2, pp. 210–217, 2014. https://doi.org/10.1016/j.joca.2013.11.003.

      [61] M. M. Monif, “Finite element study on the predicted equivalent stresses in the artificial hip joint,†J. Biomed. Sci. Eng., vol. 05, no. February,pp. 43–51, 2012. https://doi.org/10.4236/jbise.2012.52007.

  • Downloads

  • How to Cite

    KN, C., Bhat N, S., & shenoy B, S. (2018). Biomechanics of hip joint: a systematic review. International Journal of Engineering & Technology, 7(3), 1672-1676. https://doi.org/10.14419/ijet.v7i3.15231