Modeling of Kampar River Discharge as a Solitary Wave

 
 
 
  • Abstract
  • Keywords
  • References
  • PDF
  • Abstract


    The propagation of tidal bore in Kampar River is investigated through a soliton theory.  For far field region, the Bono wave can be treated as a solitary wave propagates on the open channel flow. The wave propagation in term of the Korteweg-de  Vries (KdV) equations will be described. A single soliton solution and environmental effect will be obtained. The result shows that the amplitude of tidal bore is about 5m it will have the velocity 11.6 m/s and its wavelength 30m.  We found that  the river discharge will decrease the tidal bore velocity and decay the amplitude.

     

     


  • Keywords


    Bono wave, Kampar River, KdV equations, soliton theory, tidal bore.

  • References


      [1] Bonennton P, Filippini AG, Arpaia L, Bonneton N & Ricchiuto M, “Condition for tidal bore formation in convergent alluvial estuaries”, Estuarine, Coastal and Shelf Science, Vol.172, No. 5, (2016), pp.121-127.

      [2] Chanson H, “Current knowledge in hydraulic jumps and related phenomena a survey of experimental results”, European Journal of Mechanics-B/Fluids, Vol.28, No.2, (2009), pp.191-210.

      [3] Chanson H, “Momentum considerations in hydraulic jumps and bores”, Journal of Irrigation and Drainage Engineering, Vol.138, No.4, (2012), pp.382-395.

      [4] Chanson H, “Environmental, Ecological and Cultural Impacts of Tidal Bores, Benaks, Bonos and Burros”, Proceeding of International Workshop on Environmental Hydraulics IWEH09, Theoretical, Experimental and Computational Solutions, Valencia, Spain, (2009).

      [5] Fan D, Cai GF, Shang S, Wu YJ, Zhang YW & Gao L, “Sedimentation processes and sedimentary characteristics of tidal bores along the north bank of the Qiantang Estuary”, Chinese Science Bulletin, Vol. 57, No. 13, (2012), pp.1578-1539.

      [6] Yulistianto B, “Fenomena Gelombang pasang Bono di Muara Sungai Kampar[The phenomenon of Bono rising wave in Kampar River estuary]”, Dinamika Teknik Sipil, Vol.9, No.1, (2009), pp.19–26.

      [7] Kezri N & Chanson H, “Sediment inception under breaking tidal bores”, Mechanics Research Communications, Vol.41, (2012), pp.49-53.

      [8] Dingermans M, Water waves propagation over uneven bottoms, World Scientific, (1997).

      [9] Grimshaw R, “Solitary waves propagating over variable topography”, Tsunami and Nonlinear Waves, (2007), pp.51-64.

      [10] Holloway P, Pelinosky E, Talipova T & Barnes B, “A nonlinear model of internal tide transformation on the Australian North West Shelf”, Journal of Physical Oceanography, Vol.27, No.6, (1997), pp.871-896.

      [11] R. Grimshaw, E. Pelinovsky, and X. Tian, “Interaction of a solitary wave with an external force”, Physica D: Nonlinear Phenomena, Vol.77, No.4, (1994), pp.405-433.

      [12] Zhang Y, Wang Z, Nie Z, Li C, Chen H, Lu K & Xiao M, “Four-wave mixing dipole soliton in laser-induced atomic gratings”, Physical Review Letters, Vol.106, No.9, (2011).

      [13] Zhang Y, Belić M, Wu Z, Zheng H, Lu K, Li Y & Zhang Y, “Soliton pair generation in the interactions of Airy and nonlinear accelerating beams”, Optics Letters, Vol.38, No.22, (2013), pp.4585-4588.

      [14] Zhang Y, Nie Z, Zhao Y, Li C, Wang R, Si J & Xiao M, “Modulated vortex solitons of four-wave mixing”, Optics Express, Vol.18, No.11, (2010), pp.10963-10972.


 

View

Download

Article ID: 14957
 
DOI: 10.14419/ijet.v7i3.6.14957




Copyright © 2012-2015 Science Publishing Corporation Inc. All rights reserved.