Recent developments in photovoltaic-thermoelectric combined system

 
 
 
  • Abstract
  • Keywords
  • References
  • PDF
  • Abstract


    The photovoltaic system converts solar radiation into electricity. The output of the solar photovoltaic systems is strongly depending on the operating cell temperature. The power output of photovoltaic system reduces as the operating cell temperature increases. Several techniques have been reported in the literature to maintain the low operating temperature of the solar cell by utilizing module heat for separate thermal application. Integration of photovoltaic thermoelectric (PV-TE) system is one of these techniques. In these PV-TE systems, the hot junctions of thermoelectric modules are coupled with the photovoltaic. The thermoelectric module uses heat from PV system and generates additional power. This PV-TE system not only generates more power but also improves the PV efficiency. The present article reports a comprehensive review of latest developments in the PV-TE systems. A detailed classification, key outcomes of published research and the future research scope are discussed in this article.

     

     


  • Keywords


    Photovoltaic; Thermoelectric; Indirect; Direct; BIPV.

  • References


      [1] S. Jakhar, M. S. Soni, and N. Gakkhar, “Historical and recent development of concentrating photovoltaic cooling technologies,” Renew. Sustain. Energy Rev., vol. 60, pp. 41–59, 2016. https://doi.org/10.1016/j.rser.2016.01.083.

      [2] R. Daneshazarian, E. Cuce, P. M. Cuce, and F. Sher, “Concentrating photovoltaic thermal (CPVT) collectors and systems: Theory, performance assessment and applications,” Renew. Sustain. Energy Rev., vol. 81, no. July 2017, pp. 473–492, 2018.

      [3] V. V. Tyagi, N. A. A. Rahim, N. A. Rahim, and J. A. L. Selvaraj, “Progress in solar PV technology: Research and achievement,” Renew. Sustain. Energy Rev., vol. 20, pp. 443–461, 2013. https://doi.org/10.1016/j.rser.2012.09.028.

      [4] “US20110048489A1.pdf.”

      [5] S.P.Sukhatme, Solar Energy. 2017.

      [6] R. Rawat, R. Lamba, and S. C. Kaushik, “Thermodynamic study of solar photovoltaic energy conversion: An overview,” Renew. Sustain. Energy Rev., vol. 71, no. October 2015, pp. 630–638, 2017.

      [7] N. Ari and A. Kribus, “Impact of the Peltier effect on concentrating photovoltaic cells,” Sol. Energy Mater. Sol. Cells, vol. 94, no. 12, pp. 2446–2450, 2010. https://doi.org/10.1016/j.solmat.2010.08.015.

      [8] N. Ari and A. Kribus, “Impact of the Thomson effect on concentrating photovoltaic cells,” Sol. Energy Mater. Sol. Cells, vol. 94, no. 8, pp. 1421–1425, 2010. https://doi.org/10.1016/j.solmat.2010.04.004.

      [9] A. Makki, S. Omer, Y. Su, and H. Sabir, “Numerical investigation of heat pipe-based photovoltaic-thermoelectric generator (HP-PV/TEG) hybrid system,” Energy Convers. Manag, vol. 112, pp. 274–287, 2016. https://doi.org/10.1016/j.enconman.2015.12.069.

      [10] A. Sahay, V. K. Sethi, A. C. Tiwari, and M. Pandey, “A review of solar photovoltaic panel cooling systems with special reference to Ground coupled central panel cooling system (GC-CPCS),” Renew. Sustain. Energy Rev., vol. 42, pp. 306–312, 2015. https://doi.org/10.1016/j.rser.2014.10.009.

      [11] T. Brahim and A. Jemni, “Economical assessment and applications of photovoltaic/thermal hybrid solar technology: A review,” Sol. Energy, vol. 153, pp. 540–561, 2017. https://doi.org/10.1016/j.solener.2017.05.081.

      [12] J. Zhang, Y. Xuan, and L. Yang, “Performance estimation of photovoltaic-thermoelectric hybrid systems,” Energy, vol. 78, pp. 895–903, 2014. https://doi.org/10.1016/j.energy.2014.10.087.

      [13] J. Zhang, Y. Xuan, and L. Yang, “Corrigendum to ‘Performance estimation of photovoltaic-thermoelectric hybrid systems’ [Energy 78 (2014) 895-903], https://doi.org/10.1016/j.energy.2014.10.087.

      [14] A. M. Elbreki, M. A. Alghoul, K. Sopian, and T. Hussein, “Towards adopting passive heat dissipation approaches for temperature regulation of PV module as a sustainable solution,” Renew. Sustain. Energy Rev., vol. 69, no. September, pp. 961–1017, 2017. https://doi.org/10.1016/j.rser.2016.09.054.

      [15] A. Shukla, K. Kant, A. Sharma, and P. H. Biwole, “Cooling methodologies of photovoltaic module for enhancing electrical efficiency: A review,” Sol. Energy Mater. Sol. Cells, vol. 160, no. October 2016, pp. 275–286, 2017.

      [16] Jacob Marsh, “No Title.”

      [17] D. N. Kossyvakis, G. D. Voutsinas, and E. V. Hristoforou, “Experimental analysis and performance evaluation of a tandem photovoltaic-thermoelectric hybrid system,” Energy Convers. Manag. vol. 117, pp. 490–500, 2016. https://doi.org/10.1016/j.enconman.2016.03.023.

      [18] R. Bjørk and K. K. Nielsen, “The performance of a combined solar photovoltaic (PV) and thermoelectric generator (TEG) system,” Sol. Energy, vol. 120, pp. 187–194, 2015. https://doi.org/10.1016/j.solener.2015.07.035.

      [19] K. Teffah and Y. Zhang, “Modeling and experimental research of hybrid PV-thermoelectric system for high concentrated solar energy conversion,” Sol. Energy, vol. 157, pp. 10–19, 2017. https://doi.org/10.1016/j.solener.2017.08.017.

      [20] S. Soltani, A. Kasaeian, H. Sarrafha, and D. Wen, “An experimental investigation of a hybrid photovoltaic/thermoelectric system with nanofluid application,” Sol. Energy, vol. 155, pp. 1033–1043, 2017. https://doi.org/10.1016/j.solener.2017.06.069.

      [21] T. M. Sathe and A. S. Dhoble, “A review on recent advancements in photovoltaic thermal techniques,” Renew. Sustain. Energy Rev., vol. 76, no. October 2016, pp. 645–672, 2017.

      [22] C. Feng, H. Zheng, R. Wang, and X. Ma, “Performance investigation of a concentrating photovoltaic/thermal system with transmissive Fresnel solar concentrator,” Energy Convers. Manag, vol. 111, pp. 401–408, 2016. https://doi.org/10.1016/j.enconman.2015.12.086.

      [23] N. Dimri, A. Tiwari, and G. N. Tiwari, “Thermal modelling of semitransparent photovoltaic thermal (PVT) with thermoelectric cooler (TEC) collector,” Energy Convers. Manag, vol. 146, pp. 68–77, 2017. https://doi.org/10.1016/j.enconman.2017.05.017.

      [24] Y. Deng, Z. Quan, Y. Zhao, L. Wang, and Z. Liu, “Experimental research on the performance of household-type photovoltaic-thermal system based on micro-heat-pipe array in Beijing,” Energy Convers. Manag. vol. 106, pp. 1039–1047, 2015. https://doi.org/10.1016/j.enconman.2015.09.067.

      [25] L. Micheli, N. Sarmah, X. Luo, K. S. Reddy, and T. K. Mallick, “Opportunities and challenges in micro- and nano-technologies for concentrating photovoltaic cooling: A review,” Renew. Sustain. Energy Rev., vol. 20, pp. 595–610, 2013. https://doi.org/10.1016/j.rser.2012.11.051.

      [26] M. Sardarabadi and M. Passandideh-Fard, “Experimental and numerical study of metal-oxides/water nanofluids as coolant in photovoltaic thermal systems (PVT),” Sol. Energy Mater. Sol. Cells, vol. 157, pp. 533–542, 2016. https://doi.org/10.1016/j.solmat.2016.07.008.

      [27] M. C. Browne, B. Norton, and S. J. McCormack, “Phase change materials for photovoltaic thermal management,” Renew. Sustain. Energy Rev., vol. 47, pp. 762–782, 2015. https://doi.org/10.1016/j.rser.2015.03.050.

      [28] F. Yazdanifard, M. Ameri, and E. Ebrahimnia-Bajestan, “Performance of nanofluid-based photovoltaic/thermal systems: A review,” Renew. Sustain. Energy Rev., vol. 76, no. March, pp. 323–352, 2017. https://doi.org/10.1016/j.rser.2017.03.025.

      [29] F. Yazdanifard, E. Ebrahimnia-Bajestan, and M. Ameri, “Performance of a parabolic trough concentrating photovoltaic/thermal system: Effects of flow regime, design parameters, and using nanofluids,” Energy Convers. Manag.vol. 148, pp. 1265–1277, 2017. https://doi.org/10.1016/j.enconman.2017.06.075.

      [30] C. Lamnatou, J. D. Mondol, D. Chemisana, and C. Maurer, “Modelling and simulation of Building-Integrated solar thermal systems: Behaviour of the system,” Renew. Sustain. Energy Rev., vol. 45, pp. 36–51, 2015. https://doi.org/10.1016/j.rser.2015.01.024.

      [31] H. M. Yin, D. J. Yang, G. Kelly, and J. Garant, “Design and performance of a novel building integrated PV/thermal system for energy efficiency of buildings,” Sol. Energy, vol. 87, no. 1, pp. 184–195, 2013. https://doi.org/10.1016/j.solener.2012.10.022.

      [32] A. Buonomano, G. De Luca, R. D. Figaj, and L. Vanoli, “Dynamic simulation and thermo-economic analysis of a PhotoVoltaic/Thermal collector heating system for an indoor-outdoor swimming pool,” Energy Convers. Manag. vol. 99, pp. 176–192, 2015. https://doi.org/10.1016/j.enconman.2015.04.022.

      [33] J. J. Michael, I. S, and R. Goic, “Flat plate solar photovoltaic-thermal (PV/T) systems: A reference guide,” Renew. Sustain. Energy Rev., vol. 51, pp. 62–88, 2015. https://doi.org/10.1016/j.rser.2015.06.022.

      [34] Q. Shi, J. Lv, C. Guo, and B. Zheng, “Experimental and simulation analysis of a PV/T system under the pattern of natural circulation,” Appl. Therm. Eng., vol. 121, pp. 828–837, 2017. https://doi.org/10.1016/j.applthermaleng.2017.04.140.

      [35] J. Ji, C. Guo, W. Sun, W. He, Y. Wang, and G. Li, “Experimental investigation of tri-functional photovoltaic/thermal solar collector,” Energy Convers. Manag. vol. 88, pp. 650–656, 2014. https://doi.org/10.1016/j.enconman.2014.09.030.

      [36] F. Calise, M. D. D’Accadia, and L. Vanoli, “Design and dynamic simulation of a novel solar trigeneration system based on hybrid photovoltaic/thermal collectors (PVT),” Energy Convers. Manag, vol. 60, pp. 214–225, 2012. https://doi.org/10.1016/j.enconman.2012.01.025.

      [37] V. C. Mei, F. C. Chen, B. Mathiprakasam, and P. Heenan, “Study of Solar-Assisted Thermoelectric Technology for Automobile Air Conditioning,” J. Sol. Energy Eng., vol. 115, no. November 1993, p. 200, 1993.

      [38] M. Mohsenzadeh, M. B. Shafii, and H. Jafari mosleh, “A novel concentrating photovoltaic/thermal solar system combined with thermoelectric module in an integrated design,” Renew. Energy, vol. 113, pp. 822–834, 2017. https://doi.org/10.1016/j.renene.2017.06.047.

      [39] M. Eswaramoorthy and S. Shanmugam, “Solar parabolic dish thermoelectric generator: A technical study,” Energy Sources, Part a Recover. Util. Environ. Eff., vol. 35, no. 5, pp. 487–494, 2013.

      [40] D. Sun, L. Shen, Y. Yao, H. Chen, S. Jin, and H. He, “The real-time study of solar thermoelectric generator,” Appl. Therm. Eng., vol. 119, no. March, pp. 347–359, 2017. https://doi.org/10.1016/j.applthermaleng.2017.03.075.

      [41] M. Benghanem, A. A. Al-Mashraqi, and K. O. Daffallah, “Performance of solar cells using thermoelectric module in hot sites,” Renew. Energy, vol. 89, pp. 51–59, 2016. https://doi.org/10.1016/j.renene.2015.12.011.

      [42] M. Hasan Nia, A. Abbas Nejad, A. M. Goudarzi, M. Valizadeh, and P. Samadian, “Cogeneration solar system using thermoelectric module and fresnel lens,” Energy Convers. Manag, vol. 84, pp. 305–310, 2014. https://doi.org/10.1016/j.enconman.2014.04.041.

      [43] G. Chen, X. Chen, M. Dresselhaus, and Z. Ren, “D-915,” vol. 1, no. 19, 2009.

      [44] P. Sundarraj, S. S. Roy, R. A. Taylor, and D. Maity, “Performance analysis of a hybrid solar thermoelectric generator,” Energy Sources, Part a Recover. Util. Environ. Eff., vol. 38, no. 20, pp. 2977–2984, 2016.

      [45] “US20080053514A1.pdf.”

      [46] J. Mark and A. W. Karambelas, “United States Patent [191,” pp. 2–7, 1987.

      [47] S. Wakim, B. R. Aïch, Y. Tao, and M. Leclerc, Charge transport, photovoltaic, and thermoelectric properties of poly(2,7-carbazole) and poly(indolo[3,2-b]carbazole) derivatives, vol. 48, no. 3. 2008.

      [48] L. Tayebi, Z. Zamanipour, and D. Vashaee, “Design optimization of micro-fabricated thermoelectric devices for solar power generation,” Renew. Energy, vol. 69, pp. 166–173, 2014. https://doi.org/10.1016/j.renene.2014.02.055.

      [49] R. Singh, S. Tundee, and A. Akbarzadeh, “Electric power generation from solar pond using combined thermosyphon and thermoelectric modules,” Sol. Energy, vol. 85, no. 2, pp. 371–378, 2011. https://doi.org/10.1016/j.solener.2010.11.012.

      [50] S. Omer and D. Infield, “Design optimization of thermoelectric devices for solar power generation,” Sol. Energy Mater. Sol. Cells, vol. 53, no. 1–2, pp. 67–82, 1998. https://doi.org/10.1016/S0927-0248(98)00008-7.

      [51] W. H. Chen, C. C. Wang, C. I. Hung, C. C. Yang, and R. C. Juang, “Modeling and simulation for the design of thermal-concentrated solar thermoelectric generator,” Energy, vol. 64, pp. 287–297, 2014. https://doi.org/10.1016/j.energy.2013.10.073.

      [52] C. Babu and P. Ponnambalam, “The role of thermoelectric generators in the hybrid PV/T systems: A review,” Energy Convers. Manag. vol. 151, no. August, pp. 368–385, 2017. https://doi.org/10.1016/j.enconman.2017.08.060.

      [53] R. Lamba and S. C. Kaushik, “Modeling and performance analysis of a concentrated photovoltaic-thermoelectric hybrid power generation system,” Energy Convers. Manag, vol. 115, pp. 288–298, 2016. https://doi.org/10.1016/j.enconman.2016.02.061.

      [54] P. Huen and W. A. Daoud, “Advances in hybrid solar photovoltaic and thermoelectric generators,” Renew. Sustain. Energy Rev., vol. 72, no. September, pp. 1295–1302, 2017. https://doi.org/10.1016/j.rser.2016.10.042.

      [55] K. F. Mustafa, S. Abdullah, M. Z. Abdullah, and K. Sopian, “A review of combustion-driven thermoelectric (TE) and thermophotovoltaic (TPV) power systems,” Renew. Sustain. Energy Rev., vol. 71, no. October, pp. 572–584, 2017. https://doi.org/10.1016/j.rser.2016.12.085.

      [56] M. Debbarma, K. Sudhakar, and P. Baredar, “Thermal modeling, exergy analysis, performance of BIPV and BIPVT: A review,” Renew. Sustain. Energy Rev., vol. 73, no. August 2015, pp. 1276–1288, 2017.

      [57] W. Lin, T. M. Shih, J. C. Zheng, Y. Zhang, and J. Chen, “Coupling of temperatures and power outputs in hybrid photovoltaic and thermoelectric modules,” Int. J. Heat Mass Transf., vol. 74, pp. 121–127, 2014. https://doi.org/10.1016/j.ijheatmasstransfer.2014.02.075.

      [58] R. Palma, J. L. Pérez-Aparicio, and R. Bravo, “Study of hysteretic thermoelectric behavior in photovoltaic materials using the finite element method, extended thermodynamics and inverse problems,” Energy Convers. Manag, vol. 65, pp. 557–563, 2013. https://doi.org/10.1016/j.enconman.2012.07.009.

      [59] A. Rezania, D. Sera, and L. A. Rosendahl, “Coupled thermal model of photovoltaic-thermoelectric hybrid panel for sample cities in Europe,” Renew. Energy, vol. 99, pp. 127–135, 2016. https://doi.org/10.1016/j.renene.2016.06.045.

      [60] H. Najafi and K. A. Woodbury, “Modeling and Analysis of a Combined Photovoltaic-Thermoelectric Power Generation System,” J. Sol. Energy Eng., vol. 135, no. 3, p. 31013, 2013. https://doi.org/10.1115/1.4023594.

      [61] D. Li, Y. Xuan, Q. Li, and H. Hong, “Exergy and energy analysis of photovoltaic-thermoelectric hybrid systems,” Energy, vol. 126, pp. 343–351, 2017. https://doi.org/10.1016/j.energy.2017.03.042.

      [62] Y. Luo et al., “Performance analysis of a self-adaptive building integrated photovoltaic thermoelectric wall system in hot summer and cold winter zone of China,” Energy, vol. 140, pp. 584–600, 2017. https://doi.org/10.1016/j.energy.2017.09.015.

      [63] Z. Gao, T. M. Shih, S. Su, J. Chen, and Z. Chen, “Transient models integrating photovoltaic, electron-tunneling, and thermoelectric mechanisms,” Numer. Heat Transf. Part An Appl., vol. 69, no. 10, pp. 1125–1135, 2016.

      [64] S. Dong and T. Shih, “Numerical Heat Transfer, Part A : Applications : An International Journal of Computation and Methodology Time-Dependent Photovoltaic- Thermoelectric Hybrid Systems,” no. November, pp. 37–41, 2014.

      [65] H. Hashim, J. J. Bomphrey, and G. Min, “Model for geometry optimisation of thermoelectric devices in a hybrid PV/TE system,” Renew. Energy, vol. 87, pp. 458–463, 2016. https://doi.org/10.1016/j.renene.2015.10.029.

      [66] E. Yin, Q. Li, and Y. Xuan, “Thermal resistance analysis and optimization of photovoltaic-thermoelectric hybrid system,” Energy Convers. Manag, vol. 143, pp. 188–202, 2017. https://doi.org/10.1016/j.enconman.2017.04.004.

      [67] J. Zhang and Y. Xuan, “Investigation on the effect of thermal resistances on a highly concentrated photovoltaic-thermoelectric hybrid system,” Energy Convers. Manag, vol. 129, pp. 1–10, 2016. https://doi.org/10.1016/j.enconman.2016.10.006.

      [68] V. Verma, A. Kane, and B. Singh, “Complementary performance enhancement of PV energy system through thermoelectric generation,” Renew. Sustain. Energy Rev., vol. 58, pp. 1017–1026, 2016. https://doi.org/10.1016/j.rser.2015.12.212.

      [69] A. Kane, V. Verma, and B. Singh, “Optimization of thermoelectric cooling technology for an active cooling of photovoltaic panel,” Renew. Sustain. Energy Rev., vol. 75, no. September, pp. 1295–1305, 2017. https://doi.org/10.1016/j.rser.2016.11.114.

      [70] H. Najafi and K. A. Woodbury, “Optimization of a cooling system based on Peltier effect for photovoltaic cells,” Sol. Energy, vol. 91, pp. 152–160, 2013. https://doi.org/10.1016/j.solener.2013.01.026.

      [71] M. J. Aberuee, E. Baniasadi, and M. Ziaei-Rad, “Performance analysis of an integrated solar based thermo-electric and desalination system,” Appl. Therm. Eng., vol. 110, pp. 399–411, 2017. https://doi.org/10.1016/j.applthermaleng.2016.08.199.

      [72] D. N. Kossyvakis, C. G. Vossou, C. G. Provatidis, and E. V. Hristoforou, “Computational analysis and performance optimization of a solar thermoelectric generator,” Renew. Energy, vol. 81, pp. 150–161, 2015. https://doi.org/10.1016/j.renene.2015.03.026.

      [73] J. Lin, T. Liao, and B. Lin, “Performance analysis and load matching of a photovoltaic-thermoelectric hybrid system,” Energy Convers. Manag, vol. 105, pp. 891–899, 2015. https://doi.org/10.1016/j.enconman.2015.08.054.

      [74] X. Zhang and K. T. Chau, “An automotive thermoelectric-photovoltaic hybrid energy system using maximum power point tracking,” Energy Convers. Manag, vol. 52, no. 1, pp. 641–647, 2011. https://doi.org/10.1016/j.enconman.2010.07.041.

      [75] X. Zhang and K. T. Chau, “Design and implementation of a new thermoelectric-photovoltaic hybrid energy system for hybrid electric vehicles,” Electr. Power Components Syst., vol. 39, no. 6, pp. 511–525, 2011. https://doi.org/10.1080/15325008.2010.528530.

      [76] H. Chen, N. Wang, and H. He, “Equivalent circuit analysis of photovoltaic – thermoelectric hybrid device with differnet TE module structure,” vol. 2014, pp. 1–16, 2014.

      [77] G. Li, X. Zhao, and J. Ji, “Conceptual development of a novel photovoltaic-thermoelectric system and preliminary economic analysis,” Energy Convers. Manag, vol. 126, pp. 935–943, 2016. https://doi.org/10.1016/j.enconman.2016.08.074.

      [78] E. A. Chávez-Urbiola, Y. V. Vorobiev, and L. P. Bulat, “Solar hybrid systems with thermoelectric generators,” Sol. Energy, vol. 86, no. 1, pp. 369–378, 2012. https://doi.org/10.1016/j.solener.2011.10.020.

      [79] J. Zhang and Y. Xuan, “Performance improvement of a photovoltaic - Thermoelectric hybrid system subjecting to fluctuant solar radiation,” Renew. Energy, vol. 113, pp. 1551–1558, 2017. https://doi.org/10.1016/j.renene.2017.07.003.

      [80] T. Cui, Y. Xuan, E. Yin, Q. Li, and D. Li, “Experimental investigation on potential of a concentrated photovoltaic-thermoelectric system with phase change materials,” Energy, vol. 122, pp. 94–102, 2017. https://doi.org/10.1016/j.energy.2017.01.087.

      [81] W. Zhu, Y. Deng, Y. Wang, S. Shen, and R. Gulfam, “High-performance photovoltaic-thermoelectric hybrid power generation system with optimized thermal management,” Energy, vol. 100, pp. 91–101, 2016. https://doi.org/10.1016/j.energy.2016.01.055.

      [82] Y. Deng, W. Zhu, Y. Wang, and Y. Shi, “Enhanced performance of solar-driven photovoltaic-thermoelectric hybrid system in an integrated design,” Sol. Energy, vol. 88, pp. 182–191, 2013. https://doi.org/10.1016/j.solener.2012.12.002.

      [83] A. M. Yusop, R. Mohamed, and A. Mohamed, “Inverse dynamic analysis type of MPPT control strategy in a thermoelectric-solar hybrid energy harvesting system,” Renew. Energy, vol. 86, pp. 682–692, 2016. https://doi.org/10.1016/j.renene.2015.08.071.

      [84] Y. H. Liu, Y. H. Chiu, J. W. Huang, and S. C. Wang, “A novel maximum power point tracker for thermoelectric generation system,” Renew. Energy, vol. 97, pp. 306–318, 2016. https://doi.org/10.1016/j.renene.2016.05.001.

      [85] K. P. Sibin et al., “Design and development of ITO/Ag/ITO spectral beam splitter coating for photovoltaic-thermoelectric hybrid systems,” Sol. Energy, vol. 141, pp. 118–126, 2017. https://doi.org/10.1016/j.solener.2016.11.027.

      [86] X. Ju, Z. Wang, G. Flamant, P. Li, and W. Zhao, “Numerical analysis and optimization of a spectrum splitting concentration photovoltaic-thermoelectric hybrid system,” Sol. Energy, vol. 86, no. 6, pp. 1941–1954, 2012. https://doi.org/10.1016/j.solener.2012.02.024.

      [87] X. Ju, Z. Wang, G. Flamant, P. Li, and W. Zhao, “Numerical analysis and optimization of a spectrum splitting concentration photovoltaic-thermoelectric hybrid system,” Sol. Energy, vol. 86, no. 6, pp. 1941–1954, 2012. https://doi.org/10.1016/j.solener.2012.02.024.

      [88] Y. Xu, Y. Xuan, and L. Yang, “Full-spectrum photon management of solar cell structures for photovoltaic-thermoelectric hybrid systems,” Energy Convers. Manag, vol. 103, pp. 533–541, 2015. https://doi.org/10.1016/j.enconman.2015.07.007.

      [89] M. Hajji et al., “Photovoltaic and thermoelectric indirect coupling for maximum solar energy exploitation,” Energy Convers. Manag, vol. 136, pp. 184–191, 2017. https://doi.org/10.1016/j.enconman.2016.12.088.

      [90] W. G. J. H. M. va. Sark, “Feasibility of photovoltaic - Thermoelectric hybrid modules,” Appl. Energy, vol. 88, no. 8, pp. 2785–2790, 2011. https://doi.org/10.1016/j.apenergy.2011.02.008.

      [91] D. T. Cotfas, P. A. Cotfas, O. M. Machidon, and D. Ciobanu, “Investigation of the photovoltaic cell/ thermoelectric element hybrid system performance,” IOP Conf. Ser. Mater. Sci. Eng., vol. 133, no. 1, 2016.

      [92] F. Attivissimo, a Nisio, a Maria, L. Lanzolla, and M. Paul, “Feasibility of a Photovoltaic – Thermoelectric Generator : Performance Analysis and Simulation Results,” Ieee Trans. Instrum. Meas., vol. 64, no. 5, pp. 1158–1169, 2015. https://doi.org/10.1109/TIM.2015.2410353.

      [93] G. Segev, Y. Rosenwaks, and A. Kribus, “Limit of efficiency for photon-enhanced thermionic emission vs. photovoltaic and thermal conversion,” Sol. Energy Mater. Sol. Cells, vol. 140, pp. 464–476, 2015. https://doi.org/10.1016/j.solmat.2015.05.001.

      [94] Y. Zhang and Y. Xuan, “Biomimetic omnidirectional broadband structured surface for photon management in photovoltaic-thermoelectric hybrid systems,” Sol. Energy Mater. Sol. Cells, vol. 144, pp. 68–77, 2016. https://doi.org/10.1016/j.solmat.2015.08.035.

      [95] Y. Zhang and Y. Xuan, “Preparation of structured surfaces for full-spectrum photon management in photovoltaic-thermoelectric systems,” Sol. Energy Mater. Sol. Cells, vol. 169, no. March, pp. 47–55, 2017. https://doi.org/10.1016/j.solmat.2017.04.036.

      [96] Q. Xu et al., “A transmissive, spectrum-splitting concentrating photovoltaic module for hybrid photovoltaic-solar thermal energy conversion,” Sol. Energy, vol. 137, pp. 585–593, 2016. https://doi.org/10.1016/j.solener.2016.08.057.

      [97] Y. Da, Y. Xuan, and Q. Li, “From light trapping to solar energy utilization: A novel photovoltaic-thermoelectric hybrid system to fully utilize solar spectrum,” Energy, vol. 95, pp. 200–210, 2016. https://doi.org/10.1016/j.energy.2015.12.024.

      [98] R. Rabari, S. Mahmud, and A. Dutta, “Analysis of combined solar photovoltaic-nanostructured thermoelectric generator system,” Int. J. Green Energy, vol. 13, no. 11, pp. 1175–1184, 2016. https://doi.org/10.1080/15435075.2016.1173040.

      [99] S. A. Omer and D. G. Infield, “Design and thermal analysis of a two stage solar concentrator for combined heat and thermoelectric power generation,” Energy Convers. Manag, vol. 41, no. 7, pp. 737–756, 2000. https://doi.org/10.1016/S0196-8904(99)00134-X.

      [100] C. Lertsatitthanakorn, J. Jamradloedluk, and M. Rungsiyopas, “Electricity generation from a solar parabolic concentrator coupled to a thermoelectric module,” Energy Procedia, vol. 52, no. August 2010, pp. 150–158, 2014.

      [101] Y. Y. Wu, S. Y. Wu, and L. Xiao, “Performance analysis of photovoltaic-thermoelectric hybrid system with and without glass cover,” Energy Convers. Manag, vol. 93, pp. 151–159, 2015. https://doi.org/10.1016/j.enconman.2015.01.013.

      [102] S. Y. Wu, Y. C. Zhang, L. Xiao, and Z. G. Shen, “Performance comparison investigation on solar photovoltaic-thermoelectric generation and solar photovoltaic-thermoelectric cooling hybrid systems under different conditions,” Int. J. Sustain. Energy, vol. 0, no. 0, pp. 1–16, 2017.

      [103] A. A. Candadai, V. P. Kumar, and H. C. Barshilia, “Performance evaluation of a natural convective-cooled concentration solar thermoelectric generator coupled with a spectrally selective high temperature absorber coating,” Sol. Energy Mater. Sol. Cells, vol. 145, pp. 333–341, 2016. https://doi.org/10.1016/j.solmat.2015.10.040.

      [104] K. El kamouny et al., “Thermoelectric cooling micro-inverter for PV application,” Sol. Energy Mater. Sol. Cells, no. January, pp. 0–1, 2017.

      [105] W. He, J. Zhou, C. Chen, and J. Ji, “Experimental study and performance analysis of a thermoelectric cooling and heating system driven by a photovoltaic/thermal system in summer and winter operation modes,” Energy Convers. Manag, vol. 84, pp. 41–49, 2014. https://doi.org/10.1016/j.enconman.2014.04.019.

      Y. J. Dai, R. Z. Wang, and L. Ni, “Experimental investigation and analysis on a thermoelectric refrigerator driven by solar cells,” Sol. Energy Mater. Sol. Cells, vol. 77, no. 4, pp. 377–391, 2003. https://doi.org/10.1016/S0927-0248(02)00357-4

 

View

Download

Article ID: 12709
 
DOI: 10.14419/ijet.v7i2.18.12709




Copyright © 2012-2015 Science Publishing Corporation Inc. All rights reserved.