Comparative Study of Optical Response of Semiconductors Using FDTD Method

  • Authors

    • Anushka .
    • P Aruna Priya
    2018-04-25
    https://doi.org/10.14419/ijet.v7i2.24.11999
  • FDTD, Nanowire, Semiconductor
  • Materials exhibit different properties at nanoscale than at visible-scale due to predominance of quantum effects. For solar cell applications, a nanostructure of particular interest is the nanowire. Free and open-source FDTD (Finite-Difference Time-Domain) software is used to simulate and study optical response of semiconductor materials both in the absence and presence of metal nanowires in 400 nm - 500 nm wavelength range. The results indicate enhancement in optical response of semiconductors in the presence of nanowires. Best enhancement for silicon can be obtained by using combinations of silver and gold nanowires, and this result can be used to improve the efficiency of solar cells.

     

     

  • References

    1. [1] A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed., Artech House, 2005.

      [2] F. J. Beck, A. Polman, and K. R. Catchpole, "Tunable light trapping for solar cells using localized surface plasmons," Journal of Applied Physics 105.11 (2009): 114310.

      [3] S. A. Maier and H. A. Atwater, "Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures," Journal of Applied Physics 98.1 (2005): 10.

      [4] L. Hu, H. S. Kim, J. Y. Lee, P. Peumans, and Y. Cui, "Scalable coating and properties of transparent, flexible, silver nanowire electrodes," ACS Nano 4.5 (2010): 2955-2963.

      [5] A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,†Computer Physics Communications 181.3 (2010): 687-702.

      [6] S. G. Johnson, “Materials in Meep,†http://ab-initio.mit.edu/wiki/index.php/Material_dispersion_in_Meep.

      [7] M. A. Green, "Self-consistent optical parameters of intrinsic silicon at 300 K including temperature coefficients," Solar Energy Materials and Solar Cells 92.11 (2008): 1305-1310.

      [8] G. E. Jellison Jr, "Optical functions of GaAs, GaP, and Ge determined by two-channel polarization modulation ellipsometry," Optical Materials 1.3 (1992): 151-160.

      [9] A. D. Rakić and M. L. Majewski, "Modeling the optical dielectric function of GaAs and AlAs: extension of Adachi’s model," Journal of Applied Physics 80.10 (1996): 5909-5914.

      [10] S. Adachi , T. Kimura, and N. Suzuki, "Optical properties of CdTe: experiment and modeling," Journal of Applied Physics 74.5 (1993): 3435-3441.

      [11] T. Kawashima, H. Yoshikawa, S. Adachi, S. Fuke, and K. Ohtsuka, "Optical properties of hexagonal GaN," Journal of Applied Physics 82. 7 (1997): 3528-3535.

      [12] A. D. Rakić, A. B. Djurišić, J. M. Elazar, and M. L. Majewski, "Optical properties of metallic films for vertical-cavity optoelectronic devices," Applied Optics 37.22 (1998): 5271-5283.

      [13] L. Lu, Z. Luo, T. Xu, and L. Yu, "Cooperative plasmonic effect of Ag and Au nanoparticles on enhancing performance of polymer solar cells," Nano Letters 13.1 (2012): 59-64.

      [14] L. Kranz, S. Buecheler, and A. N. Tiwari, "Technological status of CdTe photovoltaics." Solar Energy Materials and Solar Cells 119 (2013): 278-280.

      [15] D. J. Flood and I. Weinberg, "Advanced solar cells for satellite power systems," (1994).

      [16] A. Blakers, N. Zin, K. R. McIntosh, and K. Fong, "High efficiency silicon solar cells." Energy Procedia 33 (2013): 1-10.

  • Downloads

  • How to Cite

    ., A., & Aruna Priya, P. (2018). Comparative Study of Optical Response of Semiconductors Using FDTD Method. International Journal of Engineering & Technology, 7(2.24), 59-62. https://doi.org/10.14419/ijet.v7i2.24.11999