The effect of sintering temperature on characteris-tic and properties of hydroxyapatite extracted from fish scale bio-waste

  • Authors

    • MASLINDA ALIAS Universiti Malaysia Terengganu
    • SOFIAH HAMZAH Universiti Malaysia Terengganu
    • JASNIZAT SAIDIN Universiti Malaysia Terengganu
    2018-11-28
    https://doi.org/10.14419/ijet.v7i4.11939
  • Hydroxyapatite, Ceramics, Sintering, Crystallinity, Calcination
  • This present study focused on the extraction of HAp from fish scale waste using alkaline heat treatment sintered at different sintering tem-perature (high range) between 300° C to 1000°C. White powder hydroxyapatite was characterized in term of morphology, surface chemistry and crystallinity structure using Scanning Electron Microscopy, Fourier transform infrared spectroscopy (FTIR) and X-ray Diffraction (XRD), respectively. Analysis from XRD shows that FSHAp-1000 has good sharp peak indicating for high crystallinity of hydroxyapatite. While, the functional analysis performed FTIR determined several functional group attributed to PO42-, CO23- and OH-. As sintering tem-perature increase, the broad peak of PO42- becomes narrower. The intensity of CO32- is observed decreased at higher calcination temperature since they are release as volatile gases. Meanwhile, adsorbed water become narrower under treatment of water. The morphology of FSHAp changed upon treatment of heat especially at high temperature. As sintering temperature increase, the particle size of FSHAp becomes fines and a regular shape of FSHAp was found agglomerated.

  • References

    1. [1] N. Muhammad, Y. Gao, F.Iqbal, P.Ahmad, R.Ge, U. Nishan, Z.Ullah, Extraction of biocompatible hydroxyapatite from fish scales using novel approach of ionic liquid pretreatment, Separation and Purification Technology 161 (2016), 129–135. https://doi.org/10.1016/j.seppur.2016.01.047.

      [2] F.Scalera, F. Gervaso, K.P. Sanosh, A. Sannino, A.Licciulli, Influence of the calcination temperature on morphological and mechanical properties of highly porous hydroxyapatite scaffolds, Ceramics International 39(5) (2013) 4839–4846. https://doi.org/10.1016/j.ceramint.2012.11.076.

      [3] N.N. Panda, K. Pramanik & L. B. Sukla, Extraction and characterization of biocompatible hydroxyapatite from fresh water fish scales for tissue engineering scaffold, Bioprocess and Biosystems Engineering 37(3) (2014) 433–440. https://doi.org/10.1007/s00449-013-1009-0.

      [4] A. Costescu, L. Pasuk, F. Ungureanu, A. Dinischiotu, F. Huneau, S. Galaup, C.Ftir, Physico-Chemical Properties of Nano-Sized Hexagonal Hydroxyapatite Powder Synthesized By Sol-Gel, Digest Journal of Nanomaterials and Biostructures 5 (4) (2010) 989–1000.

      [5] S. Zhao, Z. Wang, J. Wang, S. Wang, Poly(ether sulfone)/polyaniline nanocomposite membranes: Effect of nanofiber size on membrane morphology and properties, Industrial and Engineering Chemistry Research 53 (28) (2014) 11468–11477. https://doi.org/10.1021/ie501235t.

      [6] A. Jungbauer, R. K. Deinhofer, P . Luo, Performance and characterization of a nanophased porous hydroxyapatite for protein chromatography, Biotechnology and Bioengineering 87 (3) (2014) 364–375. https://doi.org/10.1002/bit.20121.

      [7] T. Jesionowski, J. Zdarta, B. Krajewska, Enzyme immobilization by adsorption: A review, Adsorption 20 (5–6) (2014) 801–821. https://doi.org/10.1007/s10450-014-9623-y.

      [8] M. Ansari, S. M. Naghib, F. Moztarzadeh, A. Salati, Synthesis and characterization of hydrxyapatite calcium hydroxide for dental composites. Ceramics 67 (5) (2015) 123–126 .

      [9] N. Mustafa, M. H. Ibrahim, R. Asmawi, M. A. Amin, Hydroxyapatite Extracted from Waste Fish Bones and Scales via Calcination Method, Applied Mechanics and Materials 773–774 (2015) 287–290. https://doi.org/10.4028/www.scientific.net/AMM.773-774.287.

      [10] M. Canillas, R. Rivero, R. García-Carrodeguas, F. Barba, M.A. Rodríguez, Processing of hydroxyapatite obtained by combustion synthesis, Boletin de La Sociedad Espanola de Ceramica Y Vidrio 56 (5) (2017) 237–242. https://doi.org/10.1016/j.bsecv.2017.05.002.

      [11] M. Prakasam, M. J. Locs, J. K. Salma-Ancane, K. D. Loca, A. Largeteau, L. Berzina-Cimdina, Fabrication, properties and applications of dense hydroxyapatite: A review, Journal of Functional Biomaterials 6 (4) (2015) 1099–1140. https://doi.org/10.3390/jfb6041099.

      [12] W. Khoo, F. M. Nor, H. Ardhyananta, D. Kurniawan, Preparation of Natural Hydroxyapatite from Bovine Femur Bones Using Calcination at Various Temperatures, Procedia Manufacturing 2 (2015) 196–201. https://doi.org/10.1016/j.promfg.2015.07.034.

      [13] V. Kalaiselvi, R. Mathammal, P. Anitha, Sol-Gel Mediated Synthesis of Pure Hydroxyapatite at Different Temperatures and Silver Substituted Hydroxyapatite for Biomedical Applications, Journal of Biotechnology & Biomaterials 6 (4) ( 2017) 00-00.

      [14] S. Kongsri, P. L.N. Ayuttaya, S. Yookhum, S. Techawongstein, S. Chanthai, Characterization of hydroxyapatite nanoparticles from fish scale waste and its adsorption of carotenoids, Asian Journal of Chemistry 25 (10) (2013) 5847–5850.

      [15] T. Nagasaki, F. Nagata, M. Sakurai, K. Kato, Effects of pore distribution of hydroxyapatite particles on their protein adsorption behavior, Journal of Asian Ceramic Societies 5 (2) (2017) 88–93. https://doi.org/10.1016/j.jascer.2017.01.005.

      [16] N. Jamarun, A. Asril, Z. Azharman, T. P. Sari, S. W. Sumatera, Effect of hydrothermal temperature on synthesize of hydroxyapatite from limestone through hydrothermal method, Research Article 7 (6) (2015) 832–837.

      [17] I. Mobasherpour, M. S, Heshajin, A. Kazemzadeh, M. Zakeri, Synthesis of nanocrystalline hydroxyapatite by using precipitation method, Journal of Alloys and Compounds 430 (1-2) (2007) 330-333. https://doi.org/10.1016/j.jallcom.2006.05.018.

      [18] M. Figueiredo, A. Fernando, G. Martins, J. Freitas, F. Judas, H. Figueiredo, Effect of the calcination temperature on the composition and microstructure of hydroxyapatite derived from human and animal bone, Ceramics International 36 (8) (2010) 2383–2393. https://doi.org/10.1016/j.ceramint.2010.07.016.

      [19] T.T.T. Pham, T. P. Nguyen, T. N. Pham, T. P. Vu, D. L, Tran, H. Thai, T.M.T. Dinh, Impact of physical and chemical parameters on the hydroxyapatite nanopowder synthesized by chemical precipitation method, Advances in Natural Sciences: Nanoscience and Nanotechnology 4 (3) (2013) 035014.

      [20] A. Zanotto, M. L Saladino, D. C. Martino, E. Caponetti, Influence of Temperature on Calcium Hydroxyapatite Nanopowders, Advances in Nanoparticles 1 (3) (2012) 21–28. https://doi.org/10.4236/anp.2012.13004.

      [21] Y. C. Teh, C.Y. Tan, S. Ramesh, J. Purbolaksono, Y. M. Tan, H. Chandran, W. D. Teng, B. K.Yap, Effect of powder calcination on the sintering of hydroxyapatite, The Medical Journal of Malaysia 63 (21) (2008) 87–88.

      [22] M. F. Alif, W. Aprillia, S. Arief, Peat Water Purification by Hydroxyapatite (HAp) Synthesized from Waste Pensi ( bvg7Corbicula moltkiana ) Shells, IOP Conference Series: Materials Science and Engineering 299 (1) (2018) 12002. https://doi.org/10.1088/1757-899X/299/1/012002.

      [23] J. Venkatesan, S. K, Kim, Effect of temperature on isolation and characterization of hydroxyapatite from tuna (thunnus obesus) bone, Materials 3(10) (2010) 4761- 4772. https://doi.org/10.3390/ma3104761.

      [24] M. D. Adak, K. M. Purohit, Synthesis of nano-crystalline hydroxyapatite from dead snail shells for biological implantation, Trends in Biomaterials and Artificial Organs 25 (3) (2011) 101–106.

      [25] D. K. Pattanayak, R. Dash, R. C Prasad. B.T. Rao, T. R. Rama Mohan, Synthesis and sintered properties evaluation of calcium phosphate ceramics, Materials Science and Engineering: C 2 (74) (2007) 684–690. https://doi.org/10.1016/j.msec.2006.06.021.

      [26] Y. M. Ahmed, S. M. El-Sheikh, S. I. Zaki, Changes in hydroxyapatite powder properties via heat treatment, Bulletin of Materials Science 38 (7) (2015) 1807–1819. https://doi.org/10.1007/s12034-015-1047-0.

      [27] D. Malina, K. Biernat, A. Sobczak-Kupiec, Studies on sintering process of synthetic hydroxyapatite, Acta Biochimica Polonica 60 (4) ( 2013) 851–855.

      [28] J. Sukaimi, S. Hamzah, M. S. M. Ghazali, Green Synthesis and Characterization of Hydroxyapatite From Fish Scale Biowaste, Applied Mechanics and Materials 695 ( 2015) 235–238.

      [29] K. P. Sanosh, M. Chu, A. Balakrishnan, T. N. Kim, S-J. CHO, Preparation and characterization of nano-hydroxyapatite powder using sol – gel techniqu, Bulletin of Material Science 32 (5) (2009) 465–470. https://doi.org/10.1007/s12034-009-0069-x.

      [30] A. Abdal-hay, A. Barakat, N. A. M., & L. J. Kyoo, Hydroxyapatite-doped poly (lactic acid) porous film coating for enhanced bioactivity and corrosion behavior of AZ31 Mg alloy for orthopedic applications, Ceramics International 39 (2013) 183–195. https://doi.org/10.1016/j.ceramint.2012.06.008.

      [31] S. Mondal, B. Mondal, A. Dey, S. S. Mukhopadhyay, Studies on Processing and Characterization of Hydroxyapatite Biomaterials from Different Bio Wastes, Journal of Minerals and Materials Characterization and Engineering 11 (1) (2012) 55–67. https://doi.org/10.4236/jmmce.2012.111005.

  • Downloads

    Additional Files

  • How to Cite

    ALIAS, M., HAMZAH, S., & SAIDIN, J. (2018). The effect of sintering temperature on characteris-tic and properties of hydroxyapatite extracted from fish scale bio-waste. International Journal of Engineering & Technology, 7(4), 3726-3730. https://doi.org/10.14419/ijet.v7i4.11939