Performance improvement of 4G OFDM systems using CTSTC techniques

  • Authors

    • C Padmaja
    • B L. Malleswari
    2018-04-20
    https://doi.org/10.14419/ijet.v7i2.21.11850
  • Bit error rate, convolutional coded space time coding, turbo coded Space time coding.
  • The concatenation of channel coding and diversity schemes are essential in the 4G communication systems to improve the reliable data rate transmission. To address Bit Error Rate performance enhancement, the paper presents the coding gain and diversity gain benefits using the proposed CTSTC scheme by adding modified Turbo features and Space Time encoding features. Simulation results of are provided using MATLAB and compared the results with convolutional coded Space Time Coding technique.

     

     

  • References

    1. [1] Saltburg BR, “Performance of efficient parallel data transmission systemsâ€, IEEE Trans. on Comm. Tech., (1967), pp.805-811.

      [2] Weinstein SB & Ebert PM, “Data transmission by frequency-division multiplexing using the discrete Fourier transformâ€, IEEE Trans. Commun. Technol., Vol.19, (1971), pp.628–6343.

      [3] Peled A & Ruiz A, “Frequency Domain Data Transmission using Reduced Computational Complexity Algorithmsâ€, IEEE International Conference on Acoustics, Speech, and Signal Processing, Vol.5, (1980), pp.964 – 967.

      [4] Keasler WE, “Reliable Data Communications over the voice band-width Telephone Using Orthogonal Frequency Division Multiplexingâ€, Ph.D. dissertation, Univ. Illinois, Urbana, Il, (1982).

      [5] Hirosaki B, “An Analysis of Automatic Equalizers for Orthogonally Multiplexed QAM Systemsâ€, IEEE Transaction Communication, Vol.28, (1980), pp.73-83.

      [6] Hirosaki B, Hasegawa S, & Sabato A, “Advanced Group-band Data Modem Using Orthogonally Multiplexed QAM Techniqueâ€, IEEE Trans. Commun., Vol.34, No.6, (1986), pp.587-592.

      [7] Cimini LJ, “Analysis and Simulation of a Digital Mobile Channel using Orthogonal Frequency Division multiplexingâ€, IEEE Transaction Communications, Vol.33, (1985), pp.665-675.

      [8] Edfors O, Sandell M, Van de Beek JJ, Wilson SK & Börjesson PO, “OFDM channel estimation by singular value decompositionâ€, IEEE Trans. Commun., Vol. 46, (1998), pp.931–939.

      [9] Li Y & Sollenberger N, “Interference suppression in OFDM systems using adaptive antenna arraysâ€, IEEE Global Telecomm. Conf.: Commun. The Mini-Conf., Sydney, Australia, (1998), pp.213–218.

      [10] Li Y, Seshadri N & Ariyavisitakul S, “Transmitter diversity of OFDM systems with dispersive fading channelsâ€, IEEE Global Telecomm. Conf., Sydney, Australia, (1998), pp.968–973.

      [11] Cavers JK, “An analysis of pilot symbol assisted modulation for Rayleigh fading channelsâ€, IEEE Trans. Veh. Technol., Vol.40, (1991), pp. 686–693.

      [12] Wan F, Zhu WP, Swamy MNS, “Semiblind sparse channel estimation for MIMO-OFDM systemsâ€, IEEE Transactions on Vehicular Technology, Vol.60, (2011), pp.2569–2582.

      [13] Vitthaladevuni PK & Alouini MS, “BER computation of 4/MQAM hierarchical constellationsâ€, IEEE Trans. Broadcasting, Vol. 47, No.3, (2001), pp.228-240.

      [14] Cho K & Yoon D, “On the general BER expression of one and two dimensional amplitude modulationsâ€, IEEE Trans. Commun., Vol.50, No.7, (2002), pp.1074–1080.

      [15] Yang LL & Hanzo L, “A recursive algorithm for the error probability evaluation of M-QAMâ€, IEEE Comm. Letters, Vol.4, No.10, (2000), pp.304–306.

  • Downloads

  • How to Cite

    Padmaja, C., & L. Malleswari, B. (2018). Performance improvement of 4G OFDM systems using CTSTC techniques. International Journal of Engineering & Technology, 7(2.21), 131-134. https://doi.org/10.14419/ijet.v7i2.21.11850