Spectrum Sensing in Cognitive Radio by Use of Volume-Based Method

 
 
 
  • Abstract
  • Keywords
  • References
  • PDF
  • Abstract


    Spectrum sensing is the mission of finding the licensed user signal situation, i.e. to determine the existence and deficiency of primary (licensed) user signal, the recent publications random matrix theory algorithms performs better-quality in spectrum sensing. The RMT fundamental nature is to make use of the distributed extremal eigenvalues of the arrived signal sample covariance matrix (SMC), specifically, Tracy-Widom (TW) distribution which is useful to certain extent in spectrum sensing but demanding for numerical evaluations because there is absence of closed-form expression in it. The sample covariance matrix determinant is designed for two novel volume-based detectors or signal existence and deficiency cases are differentiated by using volume. Under the Gaussian noise postulation one of the detectors theoretical decision thresholds is perfectly calculated by using Random matrix theory. The volume-based detectors efficiency is shown in simulation results.

     


  • Keywords


    Cognitive Radio, Spectrum sensing, Energy Detector, Volume-Based Method, Licensed user, Unlicensed user

  • References


      [1] Lei Huang, H.C.So, Cheng Qian, Volume Based Method for Spectrum sensing, Digital signal processing 28 (2014) 48-56.

      [2] B.I.Ahmad,A.Tarczynski, Reliable wide band multichannel spectrum sensing using randomized sampling schemes, Signal Process 90(7)(Jul.2010)2232– 2242.

      [3] F.-X.Socheleaua, S.Houckea, P.Ciblatb,A.Aïssa-El-Beya,Cognitive OFDM system detection using pilottones secondand third order cyclostationarity, Signal Process.91(2)(Feb.2011)252–268.

      [4] B.Seo,Precoder design in cognitive radio networks with channel covariance information, Signal Process.92(12)(Dec.2012)3056–3061.

      [5] F.F.Digham,M.S.Alouini,M.K.Simon,On the energy detection of unknown signals over fading channels,EEETrans.Commun.55(1)(Jan.2007)21–24.

      [6] B.Shen,L.Huang,C.Zhao,Z.Zhou,K.Kwak,Energy detection based spectrum sensing for cognitive radio sin noise of uncertain power, in:Proc.International Symposium on Communications and Information Technologies(ISCIT),Oct.2008,pp.628–633.

      [7] T.J.Lim,R.Zhang,Y.-C.Liang,Y.Zeng,GLRT based spectrum sensing for cognitive radio,in:Proc.IEEE Global Commun.Conf.(GLOBECOM), NewOrlea ns,LO,Nov.2008,pp.1–5.

      [8] Y.Zeng,Y.-C.Liang, Eigen value-based spectrum sensing algorithms for cognitive radio, IEEE Trans. Commun.57(6)(Jun.2009)1784–1793.

      [9] A.Kortun,T.Ratnarajah,M.Sellathurai,C.Zhong,C. B.P apadias,Ontheper-formance of eigen value based cooperative spectrum sensing for cognitive ratio, IEEE J.Sel.Top .Signal Process. 5(1), (Feb.2011) 49–55.

      [10] A.Taherpour, M.Nasiri Kenari,S.Gazor, Multiple antenna spectrum sensing in cognitive radios, IEEETrans.Wirel.Commun.9(2)(Nov.2010)814–823.

      [11] B.Nadler, F.Penna, R.Garello, Performance of eigen value based signal detectors with known and unknown noise level, in:Proc.IEEE International Conference on Communications(ICC), Kyoto, Japan, Jun.2011,pp.1–5.

      [12] P.Wang, J.Fang, N.Han,H.Li, Multiantenna assisted spectrum sensing for cognitive radio, IEEE Trans.Veh.Technol.59(4) (May2010)1791–1800.

      [13] L.Wei, O.Tirkkonen, Spectrum sensing in the presence of multiple primary users, IEEE Trans.Commun.60(5) (May2012)1268–1277.

      [14] C.A.Tracy,H.Widom, On orthogonal and simplectic matrix ensembles, Commun.Math.Phys.177(1996)7 27–754.

      [15] D.Ramírez,G.Vazquez-Vilar, R.López-Valcarce, J.Vía, I.Santamaría, Detection of rank-p signals in cognitive radio networks with uncalibrated multiple antennas,IEEETrans.SignalProcess.59(8 )(Aug.2011) 3764–3774.

      [16] J.K.Tugnait, On multiple antenna spectrum sensing under noise variance uncertainty and flat fading, IEEE Trans. Signal Process. 60(4) (Apr.2012)1823–1832.

      [17] A. Mariani, A. Giorgetti, M. Chiani, Test of independence for cooperative spectrum sensing with uncalibrated receivers, in: Proc. Of IEEE Global Communications Conference (GLOBECOM),Anaheim, CA, 3-7 Dec. 2012,pp.1374–1379.

      [18] D.Ramírez, J.Vía, I.Santamaría, The locally most powerful test formulating antenna spectrum sensing with uncalibrated receivers, in:Proc.IEEEInternational Conference on Acoustics, Speech and Signal Processing(ICASSP),Kyoto,Japan,March2012,pp.3 437–3440.

      [19] N.Giri, On the complex analysis of T2-and R2-tests,Ann.Math.Stat.36(1965)665–670.

      [20] B.T.Porteous, Improved likelihood ratio statistics for covariance selection models,Biometrika72(1985) 97–101.

      [21] D.Jonsson, Some limit theorems for theEigenvalues of a sample covariance matrix, J.Multivar.Anal.12(1982)1–38.

      [22] Z.D.Bai, J.W.Silverstein, CLT for linear spectral statistics of a large dimensional sample covariance matrix, Ann.Probab.32(2004)553–605.

      [23] M.D.Springer, Algebra of Random Variables, Wiley, New York, 1973.

      [24] R.J.Muirhead, Aspects of Multi variate Statistical Theory, Wiley, New York,1982.

      [25] Q.T.Zhang, Advanced detection techniques for cognitive radio, in:Proc.IEEE International Conference on Communications(ICC), Dresden,Germany,Jun.2009,pp.1–5.

      [26] Shaik Yasmin Fathima, Md. Zia Ur Rahman, K. Murali Krishna, Shakira Bhanu,Mirza Shafi, “Side Lobe Suppression in NC-OFDM Systems Using Variable Cancellation Basis Function”, IEEE Access, vol.5, no.1, pp. 9415-9421, 2017.

      [27] Q.T.Zhang, Theoretical performance and threshold of the multi taper method for spectrum sensing, IEEE Trans.Veh.Technol. 60(5) (Jun.2011)2128–2138


 

View

Download

Article ID: 11554
 
DOI: 10.14419/ijet.v7i2.17.11554




Copyright © 2012-2015 Science Publishing Corporation Inc. All rights reserved.