Innovations and recent trends in Shape Memory Alloy: a review

 
 
 
  • Abstract
  • Keywords
  • References
  • PDF
  • Abstract


    Smart materials are materials, which have a definite response to stimulus provided through a change in pressure, temperature and termed as shape memory alloys (SMA). In this review, the general concept of SMA’s has been discussed along with shape memory effects. Shape memory material properties depend on phase shifting phenomena, which consist of pseudoelasticity and thermoelasticity. The basic SMA such as Ni-Ti (Nickel-Titanium) alloys, Copper (Cu) based SMA, Iron (Fe) based SMA are commonly used in the industry, Ni-Ti alloys are expensive but it has good super elasticity and superior mechanical properties. Cu and Fe based are economical as compared to the Ni-Ti alloys. The various fabrication techniques and common composition of the alloys have been discussed with in detail.

     


  • Keywords


    Shape Memory alloy; Nickel-Titanium.; Fabrication Techniques of SMA; Actuators; Nitinol.

  • References


      [1] J. Mohd, M. Leary, A. Subic, and M. A. Gibson, “A review of SMA research, applications and opportunities,” Mater. Des. vol. 56, pp. 1078–1113, 2014. https://doi.org/10.1016/j.matdes.2013.11.084.

      [2] P. P. A. A, M. K. D, and M. P. P. Jivrag, “Smart Materials,” vol. 13, no. 5, pp. 28–32, 2016.

      [3] L. Sun and W. M. Huang, “NATURE OF THE MULTISTAGE TRANSFORMATION IN SMA’S UPON HEATING,” vol. 51, 2009.

      [4] X. L. Meng, M. Sato, and A. Ishida, “Structure of martensite in Ti-rich Ti – Ni – Cu thin films annealed at different temperatures,” vol. 56, pp. 3394–3402, 2008.

      [5] N. Gabdullin, S. H. Khan, A. A. Rogovoy, and O. S. Stolbova, “SMA’s : a state of art review.”

      [6] B. Panton, J. P. Oliveira, Z. Zeng, Y. N. Zhou, and M. I. Khan, “Thermomechanical fatigue of post-weld heat treated NiTi SMA wires,” Int. J. Fatigue, 2016. https://doi.org/10.1016/j.ijfatigue.2016.06.012.

      [7] J. P. Oliveira, Z. Zeng, T. Omori, N. Zhou, R. M. Miranda, and F. M. B. Fernandes, “Improvement of damping properties in laser processed superelastic Cu-Al-Mn SMA’s,” JMADE, vol. 98, pp. 280–284, 2016. https://doi.org/10.1016/j.matdes.2016.03.032.

      [8] J. Ma, H. Huang, and J. Huang, “Characteristics Analysis and Testing of SMA Spring Actuator,” vol. 2013, no. 1, 2013.

      [9] K. K. Alaneme and E. A. Okotete, “Engineering Science and Technology , an International Journal Reconciling viability and cost-effective SMA options – A review of copper and iron based shape memory metallic systems,” Eng. Sci. Technol. an Int. J., 2016.

      [10] E. Faran and D. Shilo, “Ferromagnetic SMA’s — Challenges, Applications, and Experimental Characterization,” pp. 1–27, 2015.

      [11] B. Mohammad, I. Khan, A. Pequegnat, and Y. N. Zhou, “Multiple Memory SMA’s **,” no. 5, pp. 386–393, 2013.

      [12] P. Silva, “SMA’s behaviour : A review,” vol. 114, pp. 776–783, 2015.

      [13] H. Ossmer, C. Chluba, E. Quandt, M. Kohl, H. Ossmer, C. Chluba, E. Quandt, and M. Kohl, “TiNi-based films for elastocaloric microcooling — Fatigue life and device performance TiNi-based films for elastocaloric microcooling — Fatigue life and device performance,” vol. 64102, 2016.

      [14] S. Shiva, I. A. Palani, S. K. Mishra, C. P. Paul, and L. M. Kukreja, “Optics & Laser Technology Investigations on the in fl uence of composition in the development of Ni – Ti SMA using laser based additive manufacturing,” Opt. Laser Technol., vol. 69, pp. 44–51, 2015. https://doi.org/10.1016/j.optlastec.2014.12.014.

      [15] A. Vitiello, G. Giorleo, and R. E. Morace, “Analysis of thermomechanical behaviour of Nitinol wires with high strain rates,” vol. 215, 2005.

      [16] C. Zhang, S. Zhao, X. Sun, D. Sun, and X. Sun, “Corrosion of laser-welded NiTi SMA and stainless steel composite wires with a copper interlayer upon exposure to fluoride and mechanical stress,” Corros. Sci., vol. 82, pp. 404–409, 2014. https://doi.org/10.1016/j.corsci.2014.01.040.

      [17] J. Ma, F. Yang, J. I. Subirana, Z. J. Pu, and K. H. Wu, “Study of NiTi-Ta SMA’s,” vol. 3324, no. March 1998, pp. 50–57.

      [18] M. H. Elahinia, M. Hashemi, and M. Tabesh, “Progress in Materials Science Manufacturing and processing of NiTi implants : A review,” Prog. Mater. Sci., vol. 57, no. 5, pp. 911–946, 2012. https://doi.org/10.1016/j.pmatsci.2011.11.001.

      [19] J. Frenzel, A. Wieczorek, I. Opahle, B. Maaß, R. Drautz, and G. Eggeler, “ScienceDirect On the effect of alloy composition on martensite start temperatures and latent heats in Ni – Ti-based SMA’s,” Acta Mater., vol. 90, pp. 213–231, 2015. https://doi.org/10.1016/j.actamat.2015.02.029.

      [20] F. Gariboldi, S. Besseghini, and G. Airoldi, “Stress-assisted two-way memory effect electrically driven in 50 at. % Ti – 45 at. % Ni – 5 at. % Cu alloy,” vol. 440, pp. 653–656, 2006.

      [21] W. E. Letaief, T. Hassine, F. Gamaoun, and W. E. Letaief, “Tensile behaviour of superelastic NiTi alloys charged with hydrogen under applied strain Tensile behaviour of superelastic NiTi alloys charged with hydrogen under applied strain,” Mater. Sci. Technol., vol. 0, no. 0, pp. 1–6, 2017.

      [22] L. L. Meisner, A. B. Markov, V. P. Rotshtein, G. E. Ozur, S. N. Meisner, E. V Yakovlev, V. O. Semin, Y. P. Mironov, T. M. Poletika, S. L. Girsova, and D. A. Shepel, “Microstructural characterization of Ti-Ta-based surface alloy fabricated on TiNi SMA by additive pulsed electron-beam melting of film/substrate system,” J. Alloys Compd., 2017.

      [23] P. John, S. Buenconsejo, H. Young, H. Hosoda, and S. Miyazaki, “Shape memory behavior of Ti – Ta and its potential as a high-temperature SMA,” Acta Mater., vol. 57, no. 4, pp. 1068–1077, 2009. https://doi.org/10.1016/j.actamat.2008.10.041.

      [24] Y. Cheng, W. Cai, H. T. Li, Y. F. Zheng, and L. C. Zhao, “Surface characteristics and corrosion resistance properties of TiNi SMA coated with Ta,” vol. 186, pp. 346–352, 2004.

      [25] G. Xu, X. Shen, Y. Hu, P. Ma, and K. Cai, “Surface & Coatings Technology Fabrication of tantalum oxide layers onto titanium substrates for improved corrosion resistance and cytocompatibility,” Surf. Coat. Technol., vol. 272, pp. 58–65, 2015. https://doi.org/10.1016/j.surfcoat.2015.04.024.

      [26] E. Niemi, W. Serlo, E. Niemela, P. Sandvik, H. Pernu, and T. Salo, “Biocompatibility of nickel-titanium shape memory metal and its corrosion behavior in human cell cultures,” pp. 4–6, 1996.

      [27] K. Otsuka and X. Ren, “Physical metallurgy of Ti – Ni-based SMA’s,” vol. 50, pp. 511–678, 2005.

      [28] S. K. Wu, Y. S. Chen, and J. Z. Chen, “Composition control of r. f. -sputtered Ti 50 Ni 40 Cu 10 thin ® lms using optical emission spectroscopy,” vol. 365, 2000.

      [29] S. N. Saud, E. Hamzah, and T. Abubakar, “Microstructure and corrosion behaviour of Cu – Al – Ni SMA’s with Ag nanoparticles,” no. Xxx, pp. 1–8, 2014.

      [30] M. Alizadeh and M. K. Dashtestaninejad, “Fabrication of manganese-aluminum bronze as a SMA by accumulative roll bonding process,” JMADE, vol. 111, pp. 263–270, 2016. https://doi.org/10.1016/j.matdes.2016.08.074.

      [31] H. Temperature, S. Memory, and A. Problems, “Journal of Intelligent Material Systems and Structures,” 2012.

      [32] U. Sar and T. K, “Effects of deformation on microstructure and mechanical properties of a Cu – Al – Ni SMA,” vol. 59, 2007.

      [33] L. G. Ć, E. Požega, A. Kostov, N. V. Ć, V. K. Ć, D. Ž. Ć, and L. B. Ć, “Thermodynamics and characterization of shape memory Cu − Al − Zn alloys,” vol. 25, pp. 2630–2636, 2015.

      [34] J. Liu, H. Huang, and J. Xie, “Superelastic anisotropy characteristics of columnar-grained Cu – Al – Mn SMA’s and its potential applications,” JMADE, vol. 85, pp. 211–220, 2015. https://doi.org/10.1016/j.matdes.2015.06.114.

      [35] R. Dasgupta, A. K. Jain, P. Kumar, S. Hussain, and A. Pandey, “Role of alloying additions on the properties of Cu-Al-Mn SMA’s,” J. Alloys Compd., 2014.

      [36] X. Balandraud, N. Barrera, P. Biscari, M. Gr, and G. Zanzotto, “Strain intermittency in shape-memory alloys,” vol. 174111, pp. 1–11, 2015.

      [37] J. Fornell, N. Tuncer, and C. A. Schuh, “Orientation dependence in superelastic Cu-Al-Mn-Ni micropillars,” J. Alloys Compd., vol. 693, pp. 1205–1213, 2017. https://doi.org/10.1016/j.jallcom.2016.10.090.

      [38] E. M. Mazzer, C. S. Kiminami, C. Bolfarini, R. D. Cava, W. J. Botta, and P. Gargarella, “Thermochimica Acta Thermodynamic analysis of the effect of annealing on the thermal stability of a Cu – Al – Ni – Mn SMA,” Thermochim. Acta, vol. 608, pp. 1–6, 2015. https://doi.org/10.1016/j.tca.2015.03.024.

      [39] S. N. Saud, E. Hamzah, and T. Abubakar, “Correlation of microstructural and corrosion characteristics of quaternary SMA’s Cu í Al í Ni í X (X = Mn or Ti),” Trans. Nonferrous Met. Soc. China, vol. 25, no. 4, pp. 1158–1170, 2015. https://doi.org/10.1016/S1003-6326(15)63711-6.

      [40] S. Yang, F. Zhang, J. Wu, Y. Lu, Z. Shi, C. Wang, and X. Liu, “Superelasticity and shape memory effect in Cu – Al – Mn – V SMA’s,” JMADE, vol. 115, pp. 17–25, 2017. https://doi.org/10.1016/j.matdes.2016.11.035.

      [41] K. Kanayo, E. Anita, and N. Maledi, “Phase characterisation and mechanical behaviour of Fe – B modified Cu – Zn – Al SMA’s,” Integr. Med. Res., no. x x, pp. 1–11, 2017.

      [42] M. Shahverdi, C. Czaderski, and M. Motavalli, “Iron-based SMA’s for prestressed near-surface mounted strengthening of reinforced concrete beams,” Constr. Build. Mater. vol. 112, pp. 28–38, 2016. https://doi.org/10.1016/j.conbuildmat.2016.02.174.

      [43] H. Ozcan, J. Ma, S. J. Wang, I. Karaman, Y. Chumlyakov, J. Brown, and R. D. Noebe, “Scripta Materialia Effects of cyclic heat treatment and aging on superelasticity in oligocrystalline Fe-Mn-Al-Ni SMA wires,” vol. 134, pp. 66–70, 2017.

      [44] C. Czaderski, M. Shahverdi, R. Brönnimann, C. Leinenbach, and M. Motavalli, “Feasibility of iron-based SMA strips for prestressed strengthening of concrete structures,” Constr. Build. Mater. vol. 56, pp. 94–105, 2014. https://doi.org/10.1016/j.conbuildmat.2014.01.069.

      [45] W. J. Lee, B. Weber, and C. Leinenbach, “Recovery stress formation in a restrained Fe – Mn – Si-based SMA used for prestressing or mechanical joining,” Constr. Build. Mater. vol. 95, pp. 600–610, 2015. https://doi.org/10.1016/j.conbuildmat.2015.07.098.

      [46] A. Ojha and H. Sehitoglu, “Transformation Stress Modeling in New Fe-Mn-Al-Ni SMA,” Int. J. Plast., 2016. https://doi.org/10.1016/j.ijplas.2016.08.003.

      [47] G. Tadayyon, M. Mazinani, Y. Guo, and S. Mojtaba, “Materials Characterization Study of the microstructure evolution of heat treated Ti-rich NiTi SMA,” Mater. Charact. vol. 112, pp. 11–19, 2016. https://doi.org/10.1016/j.matchar.2015.11.017.

      [48] C. Van Der Eijk, Z. K. Sallom, and O. M. Akselsen, “Microwave brazing of NiTi SMA with Ag – Ti and Ag – Cu – Ti alloys,” vol. 58, pp. 779–781, 2008.

      [49] R. H. Shiue and S. K. Wu, “Infrared brazing of Ti 50 Ni 50 SMA using two Ag – Cu – Ti active braze alloys,” vol. 14, pp. 630–638, 2006.

      [50] J. P. Oliveira, F. M. B. Fernandes, N. Schell, and R. M. Miranda, “Shape memory effect of laser welded NiTi plates,” vol. 8, no. 6, pp. 1–5, 2015.

      [51] J. Bhagyaraj, K. V Ramaiah, C. N. Saikrishna, and S. K. Bhaumik, “Behaviour and effect of Ti 2 Ni phase during processing of NiTi SMA wire from cast ingot,” J. Alloys Compd., 2013. https://doi.org/10.1016/j.jallcom.2013.07.046.

      [52] H. Li, D. Sun, X. Gu, P. Dong, and Z. Lv, “Effects of the thickness of Cu filler metal on the microstructure and properties of laser-welded TiNi alloy and stainless steel joint,” Mater. Des. vol. 50, pp. 342–350, 2013. https://doi.org/10.1016/j.matdes.2013.03.014.

      [53] H. X. Zheng, J. Mentz, M. Bram, H. P. Buchkremer, and D. St, “Powder metallurgical production of TiNiNb and TiNiCu SMA’s by combination of pre-alloyed and elemental powders,” vol. 463, pp. 250–256, 2008.

      [54] Z. G. Wei, S. Miyazaki, W. Tang, and R. Sandstro, “Experimental Investigation and Thermodynamic Calculation of the Ti-Ni-Cu SMA’s,” vol. 31, no. October, pp. 2423–2430, 2000.

      [55] L. Duesseldorf, “No Title,” vol. 395, pp. 161–164, 2002.

      [56] Y. Zhou, M. Li, Y. Cheng, Y. F. Zheng, T. F. Xi, and S. C. Wei, “Surface & Coatings Technology Tantalum coated NiTi alloy by PIIID for biomedical application,” vol. 228, no. 5, pp. 2–6, 2013.

      [57] M. Manjaiah, S. Narendranath, and S. Basavarajappa, “Review on non-conventional machining of SMA’s,” Trans. Nonferrous Met. Soc. China, vol. 24, no. 1, pp. 12–21, 2014. https://doi.org/10.1016/S1003-6326(14)63022-3.

      [58] D. J. Hartl and D. C. Lagoudas, “Aerospace applications of SMA’s,” vol. 221, pp. 535–552, 2007.

      [59] I. Physics, “Micro/miniature SMA actuator,” pp. 2156–2161, 1990.

      [60] H. Search, C. Journals, A. Contact, M. Iopscience, S. Mater, and I. P. Address, “A review on SMA’s with applications to morphing aircraft,” vol. 63001.

      [61] R. Cortez-vega and I. Chairez, “A Hybrid Dynamic Model of SMA Spring Actuators A Hybrid Dynamic Model of SMA Spring Actuators,” Measurement, 2017.

      [62] A. Gessow, “An Improved SMA Actuator,” vol. 14, no. December, 2003.

      [63] C. B. Churchill, A. Arbor, and A. L. Browne, “SMA’SIS2011-,” pp. 1–6, 2016.

      [64] S. Vollach, R. Caciularu, and D. Shilo, “Scripta Materialia Equilibrium stress during the response of SMA’s to an abrupt heat pulse,” Scr. Mater., vol. 141, pp. 50–53, 2017. https://doi.org/10.1016/j.scriptamat.2017.07.016.

      [65] M. R. Caskey, G. D. Embry, R. Maurice, and S. S. In-, “COUPLING TECHNOLOGY,” no. April, 1979.

      [66] D. Stoeckel, “" S lm ## A I,” vol. 11, no. 6, pp. 302–307, 1991.

      [67] E. A. Williams, G. Shaw, and M. Elahinia, “Mechatronics Control of an automotive SMA mirror actuator,” Mechatronics, vol. 20, no. 5, pp. 527–534, 2010. https://doi.org/10.1016/j.mechatronics.2010.04.002.

      [68] B. M. Barnes, D. E. Brei, J. E. Luntz, K. Strom, A. L. Browne, and N. Johnson, “SMA Resetable Spring Lift for Pedestrian Protection,” vol. 6930, no. 2008, pp. 1–13, 2015.

      [69] M. E-class, “Long-Time Stability of Ni-Ti-SMA’s for Automotive Safety Systems,” vol. 20, no. July, pp. 506–510, 2011.

      [70] A. Bellini, M. Colli, and E. Dragoni, “Mechatronic Design of a SMA Actuator for Automotive Tumble Flaps : A Case Study,” vol. 56, no. 7, pp. 2644–2656, 2009.

      [71] M. Leary, S. Huang, T. Ataalla, A. Baxter, and A. Subic, “Design of SMA actuators for direct power by an automotive battery,” J. Mater., vol. 43, pp. 460–466, 2013. https://doi.org/10.1016/j.matdes.2012.07.002.

      [72] W. P. B. Bauer, “Concept of a start-up clutch with nickel-titanium SMA’s,” pp. 41–47, 2010.

      [73] A. Suman, A. Fortini, and M. Merlin, “ATI 2015 - 70th Conference of the ATI Engineering Association A SMA-Based Morphing Axial Fan Blade : Functional Characterization and Perspectives,” vol. 82, pp. 273–279, 2015.

      [74] A. J. Angilella, F. S. Gandhi, and T. F. Miller, “Design and testing of a SMA buoyancy engine for unmanned underwater vehicles,” Smart Mater. Struct. vol. 24, no. 11, p. 115018. https://doi.org/10.1088/0964-1726/24/11/115018.

      [75] W. Wang, H. Rodrigue, H. Kim, M. Han, and S. Ahn, “Soft composite hinge actuator and application to compliant robotic gripper,” Compos. Part B, vol. 98, pp. 397–405, 2016. https://doi.org/10.1016/j.compositesb.2016.05.030.

      [76] N. Ma, G. Song, and H. Lee, “Position control of SMA actuators with internal electrical,” vol. 777.

      [77] H. Kim, M. Han, S. Song, and S. Ahn, “Soft morphing hand driven by SMA tendon wire,” Compos. Part B, vol. 105, pp. 138–148, 2016. https://doi.org/10.1016/j.compositesb.2016.09.004.

      [78] N. R. Fisco and H. Adeli, “Sharif University of Technology Smart structures : Part I — Active and semi-active control,” Sci. Iran., vol. 18, no. 3, pp. 275–284, 2011. https://doi.org/10.1016/j.scient.2011.05.034.

      [79] N. B. Morgan, “Medical SMA applications the market and its products,” vol. 378, pp. 16–23, 2004.

      [80] S. A. Thompson, “An overview of nickel – titanium alloys used in dentistry,” vol. 44, no. 0, pp. 297–310, 2000.

      [81] H. Fischer, B. Vogel, and A. Welle, “Applications of SMA’s in medical instruments,” vol. 13, no. 4, pp. 248–253, 2004.

      [82] Z. X. Khoo, J. Ee, M. Teoh, Y. Liu, and C. K. Chua, “3D printing of smart materials : A review on recent progresses in 4D printing,” vol. 2759, no. October, 2015.

      [83] T. Publications and F. U. Berlin, “No Title,” vol. 328, pp. 17–22, 2000.

      [84] C. Costa, M. Monteiro, B. Rangel, and F. J. L. Alves, “Industrial and natural waste transformed into raw material,” vol. 231, pp. 247–256, 2017.


 

View

Download

Article ID: 11445
 
DOI: 10.14419/ijet.v7i4.11445




Copyright © 2012-2015 Science Publishing Corporation Inc. All rights reserved.