Detection and control of power loss due to soiling and faults in photovoltaic solar farms via wireless sensor network

  • Authors

    • Ahmed Abid Middle Technical University
    • Adel Obed Middle Technical University
    • Fawzi Al-Naima Al-Mamoon University College
    2018-05-12
    https://doi.org/10.14419/ijet.v7i2.10987
  • Photovoltaic Solar Farms, Fault Detection, Fault Control, Arduino Applications, WSN, MPPT.
  • Solar photovoltaic (PV) farm output power is highly related to the panel conditions. Soiling causes faults in the PV panels leading to a dras-tic reduction in the system efficiency. In vast solar PV farms, the detection of faults in an individual PV panel is a difficult task since it is usually done manually. In this research, a new design is proposed to detect the production of individual PV panel automatically and periodically to evaluate the condition of each panel in the farm no matter how it is connected in the array. The proposed design allows the user to measure the open circuit voltage (VOC), the short circuit current (ISC) and the delivered power for each PV panel in the farm. It is also capable of controlling each panel to work at the maximum power point using a built in Maximum Power Point Tracking (MPPT) sub-circuit on each solar panel. The presented system depicts a complete wireless sensor network, which does not need any extra wiring and is character-ized by being of low cost, reliable and efficient.

  • References

    1. [1] S. A. Sulaiman, A. K. Singh, M. M. M. Mokhtar, and M. A. Bou-Rabee, “Influence of dirt accumulation on performance of PV panels,†in Energy Procedia, 2014, vol. 50, pp. 50–56. https://doi.org/10.1016/j.egypro.2014.06.006.

      [2] M. M. Rahman, M. A. Islam, A. H. M. Z. Karim, and A. H. Ronee, “Effects of Natural Dust on the Performance of PV Panels in Bangladesh,†Int. J. Mod. Educ. Comput. Sci., vol. 4, no. 10, pp. 26–32, 2012. https://doi.org/10.5815/ijmecs.2012.10.04.

      [3] K. A. Moharram, M. S. Abd-Elhady, H. A. Kandil, and H. El-Sherif, “Influence of cleaning using water and surfactants on the performance of photovoltaic panels,†Energy Convers. Manga. vol. 68, pp. 266–272, 2013. https://doi.org/10.1016/j.enconman.2013.01.022.

      [4] S. A. Sulaiman, M. N. H. Mat, F. M. Guangul, and M. A. Bou-Rabee, “Real-time study on the effect of dust accumulation on performance of solar PV panels in Malaysia,†in Proceedings of 2015 International Conference on Electrical and Information Technologies, ICEIT 2015, 2015, pp. 269–274. https://doi.org/10.1109/EITech.2015.716293.

      [5] C. E. Chamberlin, P. Lehman, J. Zoellick, and G. Pauletto, “Effects of mismatch losses in photovoltaic arrays,†Sol. Energy, vol. 54, no. 3, pp. 165–171, 1995. https://doi.org/10.1016/0038-092X(94)00120-3.

      [6] T. S. Wurster and M. B. Schubert, “Mismatch loss in photovoltaic systems,†Sol. Energy, vol. 105, pp. 505–511, 2014. https://doi.org/10.1016/j.solener.2014.04.014.

      [7] N. S. Beattie, R. S. Moir, C. Chacko, G. Buffoni, S. H. Roberts, and N. M. Pearsall, “Understanding the effects of sand and dust accumulation on photovoltaic modules,†Renew. Energy, vol. 48, pp. 448–452, 2012. https://doi.org/10.1016/j.renene.2012.06.007.

      [8] S. A. M. Said, “Effects of dust accumulation on performances of thermal and photovoltaic flat-plate collectors,†Appl. Energy, vol. 37, no. 1, pp. 73–84, 1990. https://doi.org/10.1016/0306-2619(90)90019-A.

      [9] R. E. Cabanillas and H. Munguía, “Dust accumulation effect on efficiency of Si photovoltaic modules,†J. Renew. Sustain. Energy, vol. 3, no. 4, 2011. https://doi.org/10.1063/1.3622609.

      [10] S. Mekhilef, R. Saidur, and M. Kamalisarvestani, “Effect of dust, humidity and air velocity on efficiency of photovoltaic cells,†Renewable and Sustainable Energy Reviews, vol. 16, no. 5. pp. 2920–2925, 2012. https://doi.org/10.1016/j.rser.2012.02.012.

      [11] F. M. Al-Naima, R. S. Ali, and A. J. Abid, “Solar Tracking System: Design based on GPS and Astronomical Equations,†IT-DREPS Conf. Exhib., pp. 1–6, 2013.

      [12] A. J. Abid, “Arduino Based Blind Solar Tracking Controller,†An Int. Open Access Journal, IETI Trans. Comput., vol. 5, no. 10, pp. 24–29, 2017.

      [13] F. Al-Naima, R. Ali, and A. J. Abid, “Design of an Embedded Solar Tracking System Based on GPS and Astronomical Equations,†Int. J. Inf. Technol. Web Eng., vol. 9, no. 1, pp. 12–31, 2014. https://doi.org/10.4018/ijitwe.2014010102.

      [14] A. J. Abid and A. H. Ali, “Smart Monitoring of the Consumption of Home Electrical Energy,†Int. J. Comput. Trends Technol., vol. 47, no. 2, pp. 142–148, 2017. https://doi.org/10.14445/22312803/IJCTT-V47P120.

      [15] A. J. Abid, R. S. Ali, F. M. Al-Naima, Z. Ghassemlooy, and Z. Gao, “A new power line communication modem design with applications to vast solar farm management,†2013 3rd Int. Conf. Electr. Power Energy Convers. Syst. EPECS 2013, no. 3, 2013. https://doi.org/10.1109/EPECS.2013.6713015.

      [16] D. Ji, C. Zhang, M. Lv, Y. Ma, and N. Guan, “Photovoltaic Array Fault Detection by Automatic Reconfiguration,†Energies, vol. 10, no. 5, p. 699, 2017. https://doi.org/10.3390/en10050699.

      [17] W. Chine, A. Mellit, A. M. Pavan, and V. Lughi, “Fault diagnosis in photovoltaic arrays,†in 2015 International Conference on Clean Electrical Power (ICCEP), 2015, pp. 67–72.

      [18] H. Mekki, A. Mellit, and H. Salhi, “Artificial neural network-based modelling and fault detection of partial shaded photovoltaic modules,†Simul. Model. Pract. Theory, vol. 67, pp. 1–13, 2016. https://doi.org/10.1016/j.simpat.2016.05.005.

      [19] A. Al Dahoud, M. Fezari, T. A. Al-rawashdeh, and I. Jannoud, “Improving Monitoring and Fault Detection of Solar Panels Using Arduino Mega in WSN,†in 17th International Conference on Electrical Machines and Power Electronics, March 14-15, 2015.

      [20] K. Menoufi, “Dust accumulation on the surface of photovoltaic panels: Introducing the Photovoltaic Soiling Index (PVSI), Sustain†vol. 9, no. 6, 2017.

      [21] G. Makrides, B. Zinsser, M. Norton, and G. E. Georghiou, “Performance of Photovoltaics Under Actual Operating Conditions,†in Third Generation Photovoltaics, InTech, 2012. https://doi.org/10.1016/j.rser.2010.07.065.

      [22] M. Mani and R. Pillai, “Impact of dust on solar photovoltaic (PV) performance: Research status, challenges and recommendations,†Renew. Sustain. Energy Rev., vol. 14, no. 9, pp. 3124–3131, 2010.

      [23] M. R. Maghami, H. Hizam, C. Gomes, M. A. Radzi, M. I. Rezadad, and S. Hajighorbani, “Power loss due to soiling on solar panel: A review,†Renewable and Sustainable Energy Reviews, vol. 59. pp. 1307–1316, 2016. https://doi.org/10.1016/j.rser.2016.01.044.

      [24] F. A. Mejia and J. Kleissl, “Soiling losses for solar photovoltaic systems in California,†Sol. Energy, vol. 95, pp. 357–363, 2013. https://doi.org/10.1016/j.solener.2013.06.028.

      [25] H. Pedersen, J. Strauss, and J. Selj, “Effect of Soiling on Photovoltaic Modules in Norway,†in Energy Procedia, 2016, vol. 92, pp. 585–589. https://doi.org/10.1016/j.egypro.2016.07.023.

      [26] S. C. S. Costa, A. S. A. C. Diniz, and L. L. Kazmerski, “Dust and soiling issues and impacts relating to solar energy systems: Literature review update for 2012-2015,†Renewable and Sustainable Energy Reviews, vol. 63. pp. 33–61, 2016. https://doi.org/10.1016/j.rser.2016.04.059.

      [27] S. A. M. Said, G. Hassan, H. M. Walwil, and N. Al-Aqeeli, “The effect of environmental factors and dust accumulation on photovoltaic modules and dust-accumulation mitigation strategies,†Renewable and Sustainable Energy Reviews, vol. 82. pp. 743–760, 2018. https://doi.org/10.1016/j.rser.2017.09.042.

      [28] M. Banavar et al., Signal Processing for Solar Array Monitoring, Fault Detection, and Optimization, vol. 3, no. 1. Morgan & Claypool Publishers, 2012.

      [29] S. Kalogirou, Solar Energy Engineering: Processes and Systems, 1st ed. Academic Press, 2009.

      [30] F. Bayrak, G. Ertürk, and H. F. Oztop, “Effects of partial shading on energy and exergy efficiencies for photovoltaic panels,†J. Clean. Prod., vol. 164, pp. 58–69, 2017. https://doi.org/10.1016/j.jclepro.2017.06.108.

      [31] B. R. Paudyal and S. R. Shakya, “Dust accumulation effects on efficiency of solar PV modules for off grid purpose: A case study of Kathmandu,†Sol. Energy, vol. 135, pp. 103–110, 2016. https://doi.org/10.1016/j.solener.2016.05.046.

      [32] F. M. Al-Naima and A. G. Albaali, “Analysis of Dust Parameters and Evaluation of Their Impact on Solar Photovoltaic Panel Performance.,†in International Conference on Renewable Energy and its Future in the Arab World 2013 ICREFAW 2013,, Amman, Jordan., 2013.

      [33] D. R. Brooks, an Introduction to HTML and JavaScript: for Scientists and Engineers. Springer Science & Business Media, 2007.

      [34] J. Hayward, Django Javascript integration: AJAX and jQuery. Packt Publishing Ltd., 2011.

      [35] J. Chaffer and K. Swedberg, Learning jQuery, 4th ed. Packt Publishing Ltd, 2013.

      [36] C. Lindley, jQuery Cookbook: Solutions & Examples for jQuery Developers, 1st ed. O’Reilly Media, Inc, 2009.

      [37] Ian Pouncey and R. York, Beginning CSS: Cascading Style Sheets for Web Design, 3rd ed. John Wiley & Sons,.

      [38] B. Efron and R. J. Tibshirani, “An Introduction to the Bootstrap,†Refrig. Air Cond., vol. 57, no. 57, p. 436, 1993.

      [39] B. Efron, “Second Thoughts on the Bootstrap,†Stat. Sci., vol. 18, no. 2, pp. 135–140, 2003. https://doi.org/10.1214/ss/1063994968.

      [40] T. Hesterberg, “Bootstrap,†Wiley Interdiscip. Rev. Comput. Stat., vol. 3, no. 6, pp. 497–526, 2011. https://doi.org/10.1002/wics.182.

      [41] A. McEwen and H. Cassimally, Designing the Internet of Things. John Wiley & Sons, 2013.

      [42] M. H. Moradi and A. R. Reisi, “A hybrid maximum power point tracking method for photovoltaic systems,†Sol. Energy, vol. 85, no. 11, pp. 2965–2976, 2011. https://doi.org/10.1016/j.solener.2011.08.036.

      [43] D. P. Hohm and M. E. Ropp, “Comparative study of maximum power point tracking algorithms using an experimental, programmable, maximum power point tracking test bed,†Photovolt. Spec. Conf. 2000. Conf. Rec. Twenty-Eighth IEEE, pp. 1699–1702, 2000.

      [44] G. M. S. Azevedo, M. C. Cavalcanti, K. C. Oliveira, F. A. S. Neves, and Z. D. Lins, “Evaluation of maximum power point tracking methods for grid connected photovoltaic systems,†in Power Electronics Specialists Conference, 2008. PESC 2008. IEEE, 2008, pp. 1456–1462. https://doi.org/10.1109/PESC.2008.4592141.

      [45] Y. Zhao, J. de Palma, J. Mosesian, R. Lyons, and B. Lehman, “Line-Line Fault Analysis and Protection Challenges in Solar Photovoltaic Arrays,†Ind. Electron. IEEE Trans., vol. 60, no. 9, pp. 3784–3795, 2013. https://doi.org/10.1109/TIE.2012.2205355.

      [46] M. J. Albers and G. Ball, “Comparative Evaluation of DC Fault-Mitigation Techniques in Large PV Systems,†IEEE J. Photovoltaics, vol. 5, no. 4, pp. 1169–1174, 2015. https://doi.org/10.1109/JPHOTOV.2015.2422142.

      [47] Thakurdesai PA, Kole PL & Pareek RP (2004), Evaluation of the quality and contents of diabetes mellitus patient education on Internet. Patient Education and Counseling 53, 309–313. https://doi.org/10.1016/j.pec.2003.04.001.

  • Downloads

  • How to Cite

    Abid, A., Obed, A., & Al-Naima, F. (2018). Detection and control of power loss due to soiling and faults in photovoltaic solar farms via wireless sensor network. International Journal of Engineering & Technology, 7(2), 718-724. https://doi.org/10.14419/ijet.v7i2.10987