A novel method for minimizing distortions in endoscopy medical images

 
 
 
  • Abstract
  • Keywords
  • References
  • PDF
  • Abstract


    A short prologue to the historical backdrop of endoscopy we outline the distinctive strategies which exist to perform endoscopic techniques. Medicinal endoscope creature has the attributes as very exactness, utilitarian adaptability and cost effectiveness, which makes it the aide of therapeutic, analyze and additionally the establishment of long-remove transmission of restorative pictures .In this paper, real time endoscopic optical rationality tomography (EOCT) imaging framework. A few mechanical advancements are presented that enhance EOCT proficiency and execution. By utilizing EOCT framework, clinical investigations in first stage the throat, intestine, duodenum, ileum, colon, and rectum of patients with typical endoscopic discoveries were inspected. Tiny structures, for example, organs, veins, pits, awful, and graves were likewise watched. The mutilation of medicinal picture, for example, fluffy key points of interest of tissues might show up affected by the intertwining filtering innovation, which may cause misdiagnoses. De-interweaving system to kill mutilation is basic. At last, as indicated by the significant reason of picture intertwining twisting in medicinal endoscope framework, versatile de-joining calculation is utilized to wipe out the mutilation with. 


  • Keywords


    EOCT pictures, Optimization, Interpolation bending expulsion, contortion remedy.

  • References


      [1] Huang, D.; Swanson, E.A.; Lin, C.P.; Schuman, J.S.; Stinson, W.G.; Chang, W.; Hee, M.R.; Flotte, T.; Gregory, K.; Puliafito, C.A.; et al. Optical coherence tomography. Science 1991, 254, 1178–1181.

      [2] Fujimoto, J.G.; Pitris, C.; Boppart, S.A.; Brezinski, M.E. Optical coherence tomography: An emerging technology for biomedical imaging and optical biopsy. Neoplasia 2000, 2, 9–25.

      [3] Fujimoto, J.G. Optical coherence tomography for ultrahigh resolution in vivoimaging. Nat. Biotechnol. 2003, 21, 1361–1367.

      [4] Fujimoto, J.G.; Brezinski, M.E.; Tearney, G.J.; Boppart, S.A.; Bouma, B.; Hee, M.R.; Southern, J.F.; Swanson, E.A. Optical biopsy and imaging using optical coherence tomography. Nat. Med. 1995, 1, 970–972.

      [5] Brezinski, M.E.; Tearney, G.J.; Bouma, B.E.; Izatt, J.A.; Hee, M.R.; Swanson, E.A.; Southern, J.F.; Fujimoto, J.G. Optical coherence tomography for optical biopsy. Properties and demonstration of vascular pathology. Circulation 1996, 93, 1206–1213.

      [6] Tearney, G.J.; Brezinski, M.E.; Bouma, B.E.; Boppart, S.A.; Pitvis, C.; Southern, J.F.; Fujimoto, J.G. In vivo endoscopic optical biopsy with optical coherence tomography. Science 1997, 276, 2037–2039.

      [7] Takada, K.; Yokohama, I.; Chida, K.; Noda, J. New measurement system for fault location in optical waveguide devices based on an interferometric technique. Appl. Opt. 1987, 26, 1603–1608.

      [8] Gilgen, H.H.; Novak, R.P.; Salathe, R.P.; Hodel, W.; Beaud, P. Submillimeter optical reflectometry. IEEE J. Lightwave Technol. 1989, 7, 1225–1233.

      [9] Youngquist, R.; Carr, S.; Davies, D. Optical coherence-domain reflectometry: A new optical evaluation technique. Opt. Lett. 1987, 12, 158–160.

      [10] Swanson, E.A.; Huang, D.; Hee, M.R.; Fujimoto, J.G.; Lin, C.P.; Puliafito, C.A. High-speed optical coherence domain reflectometry. Opt. Lett. 1992, 17, 151–153.

      [11] Swanson, E.A.; Izatt, J.A.; Hee, M.R.; Huang, D.; Lin, C.P.; Schuman, J.S.; Puliafito, C.A.; Fujimoto, J.G. In vivo retinal imaging by optical coherence tomography. Opt. Lett. 1993, 18, 1864–1866.

      [12] Fercher, A.F.; Hitzenberger, C.K.; Kamp, G.; Elzaiat, S.Y. Measurement of intraocular distances by backscattering spectral interferometry. Opt. Commun. 1995, 117, 43–48.

      [13] Choma, M.A.; Sarunic, M.V.; Yang, C.H.; Izatt, J.A. Sensitivity advantage of swept source and fourier domain optical coherence tomography. Opt. Exp. 2003, 11, 2183–2189.

      [14] De Boer, J.F.; Cense, B.; Park, B.H.; Pierce, M.C.; Tearney, G.J.; Bouma, B.E. Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography. Opt. Lett. 2003, 28, 2067–2069.

      [15] Leitgeb, R.; Hitzenberger, C.K.; Fercher, A.F. Performance of fourier domain vs. Time domain optical coherence tomography. Opt. Exp. 2003, 11, 889–894.

      [16] Cense, B.; Nassif, N.; Chen, T.C.; Pierce, M.C.; Yun, S.; Park, B.H.; Bouma, B.; Tearney, G.; de Boer, J.F. Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography. Opt. Exp. 2004, 12, 2435–2447.


 

View

Download

Article ID: 10846
 
DOI: 10.14419/ijet.v7i1.1.10846




Copyright © 2012-2015 Science Publishing Corporation Inc. All rights reserved.