

Copyright © 2018 Authors. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted

use, distribution, and reproduction in any medium, provided the original work is properly cited.

International Journal of Engineering & Technology, 7 (2.3) (2018) 46-49

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET

Research Paper

Identify the effective documentation method for representing

the functional software architecture

Iyas Ibriwesh1* , Sin-Ban Ho2, Ian Chai3

1, 2, 3Faculty of Computing and Informatics, Multimedia University, 63100 Cyberjaya, Selangor, Malaysia

*Corresponding author E-mail: ibrawish2012@gmail.com

Abstract

Software architecture mainly focuses on the high-level structures of the proposed software, and how to document these structures. A

documentation method that represents an incomplete picture is one reason for inadequate requirements. This leads to requirements engi-

neers wasting their time arguing over what to do and how to do it. Four documentation methods are frequently used in order to document

stakeholders' statements, particularly for representing the functional perspective, namely, Natural Language (NL), Data Flow Diagram

(DFD), Use Case Diagram (UCD), and Activity Diagram (AD). This research was carried out using the electronic market application

domain as a test context. A controlled experiment was conducted among 158 participants, comparing among NL, DFD, UCD, and AD

methods, which aimed to find out which requirements documentation method is more effective, helpful, and easier to comprehend. The

results from this empirical study reveal that the AD method is more effective, understandable, and easier to document the software re-

quirements in the functional perspective. Furthermore, AD had better performance in representing the requirements engineering context,

system context, and development context than the other functional documentation methods. These empirical results would help software

companies and associated experts enhance the quality of their software products, as well as increase the chance of success of software

projects.

Keywords: Software Architecture, Requirements Documentation, Controlled Experiment, Requirements Engineering Context, Functional Perspective.

1. Introduction

Software system projects still suffer from shortcomings in the

requirements engineering (RE) phase. Approximately 60% of all

mistakes that occurred in the software development projects occur

in the RE phase [1]. When an error occurred in this phase, the

project’s budget and schedule will likely overrun. Therefore, RE is

considered the hardest and the most important phase in the soft-

ware development life cycle [2].

Software practitioners depend on documents as the main commu-

nication medium. So, effective communication and collaboration

between the system’s developers and end users is necessary to

develop a successful software product with high quality [3]. Poor-

ly documented requirements is considered one of the most im-

portant factors causing failure of software projects [4]. If the re-

quirements engineers could not understand what the customer

really needs, this leads them to create incorrect diagrams, and

subsequently, the software developed would likely fail and be

rejected by the customer.

The main goal of this study is to improve the requirements docu-

mentation activity, by identifying the best method that should be

used for representing the functional perspective in the software to

be developed. This could be done by comparing among the differ-

ent requirements documentation methods (the most common

methods) that are used in the functional perspective. The func-

tional documentation methods are the Natural Language (NL), the

Data Flow Diagram (DFD), the Use Case Diagram (UCD), and the
Activity Diagram (AD) [1]. This comparison aims to determine

which method is easier for the participants to read, understand,

and use, as well as which method has better ability to represent the

requirements engineering context.

This paper starts with requirements documentation methods that

are widely used in the functional perspective, which are highlight-

ed in Section 2. The experimental hypotheses and methodology on

how the study was conducted are explained in details in Section 3.

Section 4 represents the experimental participants’ knowledge and

characteristics. The statistical analysis, results, and discussions are

presented in Section 5. At the end of this paper, the conclusions of

this study are presented in Section 6.

2. Documenting software architecture

Functional, data, and behavioural perspectives should be docu-

mented separately, using suitable conceptual modelling languages

[1]. This empirical study concentrated on the functional perspec-

tive, which documents which information of the system context is

being manipulated by the proposed system and which data is being

transmitted to the system context by the system. DFD, UCD, and

AD are commonly used as requirements models to document

software requirements in the functional perspective. Furthermore,

NL is widely applied to document any kind of requirements, and it

is frequently used to model the functional perspective of require-

ments [1].

3. Experimental design

A controlled experiment has been carried out, in which the E-

market application domain, online flea market system (OFMS)

http://creativecommons.org/licenses/by/3.0/
https://en.wikipedia.org/wiki/Software_system

International Journal of Engineering & Technology 47

was used as a test context. It is an exercise-based research which

is usually applied in empirical software engineering. After the

documentation and the exercises were prepared, based on the hy-

potheses, they were checked for usability and readability before

they were ready to be used for data collection. The collected data

was then entered and analysed using the proper statistical tech-

niques.

3.1 Hypotheses

The null hypothesis (H0) or expectation that the researchers inves-

tigated in this empirical study is stated as follows:

There are no significant differences among NL, DFD, UCD, and

AD methods for the participants in the identification of require-

ment sources exercise; regarding to the subject facet, usage facet,

IT facet, sum of system context, development context, require-

ments engineering context, sum of requirements sources, time

spent, and number of difficulties faced. The experiment interpreta-

tions are derived from rejecting or accepting this hypothesis for

each expectation.

3.2 Exercise

The evaluation approach used in this study is an exercise or exam-

ination rather than a survey of opinions. Participants were asked to

record the start and end time during answering the exercise, in

order to measure the time they needed to finish the comprehension

tasks. Each of the participants was assigned randomly to one of

the four groups, as shown in Table 1. Each group was asked to

finish this task within two hours. After the controlled experiment,

the researchers counted the number of the correct answers for the

exercise respondent. All the four versions of the system specifica-

tion with different experimental diagrams were prepared by the

researchers, and then they checked the correctness and readability

of the exercise. The participants were introduced to the domain by

providing them with a small description of the Online Flea Market

System (OFMS) domain.

3.2.1 Identification of requirement sources exercise

The philosophy that was used in this experiment is based on the

participant's ability to elicit the requirements (identification of

requirement sources) using a given method from the chore of DFD,

UCD, AD, and NL. This process evaluates the effectiveness and

efficiency of each method in representing the requirements engi-

neering context, the system context (the subject facet, the usage

facet, and the IT system facet), as well as the development context.

Each participant was given a specification of the same system,

which was expressed using one of four methods (NL, DFD, UCD,

and AD). Each of them was also provided with a small piece of

text to define the online flea market system (OFMS) domain in

general

3.2.2 Variables of the exercise (identification of requirement

sources exercise)

One independent variable as well as nine dependent variables,

were used in this experimental design, are explained below.

Independent variable: method used (type): Four methods were

used in order to document the software requirements (NL, DFD,

UCD, and AD), each with the same purpose.

Dependent variables: the experimental design involved nine de-

pendent variables, which may be affected by the used documenta-

tion method. The dependent variables are: subject facet, usage

facet, IT system facet, sum system context, development context,

requirements engineering context, sum of the whole exercise,

number of difficulties faced, and time spent. These dependant

variables were used for measuring the comprehension level (the

correctness of the answers), and the ease of use (the number of

difficulties and the required time to finish the task).

4. Experimental participants

Evaluating an initial hypothesis could be useful when done at a

university environment rather than conducted in the industrial

setting. Reasons for that were mentioned by [5]. He stated that it is

more cost-effective to use students as participants, as well as stu-

dents are available in a sufficiently large number. In this study, all

the participants groups were undergraduates at the Multimedia

University, who are undergoing the "software engineering three

year specialization program". These participants were taking the

software requirements engineering course, and they will be gradu-

ated as software engineers soon.

The experimental exercises were executed in four laboratories,

each of which was a software engineering laboratory for one

group (session). In the laboratory, each participant was located at a

computer randomly, the participants were given the exercise forms

(the experimental diagrams) as well as they were provided with an

online tutorial (documentation), and they were requested to go

through it and follow its content, to perform their tasks and fill up

the exercise answers. The study involved a total of 158 partici-

pants, 122 (77 percent) males and 36 (23 percent) females. The

mean age of the participants is 21.8 years. All the study partici-

pants (n=158) have done the exercise, 37 participants did the exer-

cise using NL method, 35 did it using the DFD method, 40 did it

using the UCD method, and 46 did it using the AD method, see

Table 1.

Table 1: Participants Groups and their Used Methods

Identification of Requirement Sources Exercise

Groups
Number of
Participants

Used Method

Group 1 (Session 1) 37 participants NL

Group 2 (Session 2) 40 participants UCD

Group 3 (Session 3) 35 participants DFD

Group 4 (Session 4) 46 participants AD

Table 2 affirms that the four participating groups are balanced in

regards of their cumulative grade point average (CGPA). This was

found out by checking the groups’ differences using both chi-

square test that was used to check for the gender, and ANOVA

Test that was used to check for the CGPA. These tests emphasized

that there are no significant differences among the groups in their

CGPA due to a p-value was higher than 0.050. Thus, this result

indicates that the participants’ achievements (knowledge and

backgrounds) were balanced during conducting this experiment.

Table 2: Characteristics of the Study Participants

5. Results and discussion

5.1 Statistical analysis

Statistical Package for Social Sciences (SPSS) was used for enter-

ing and analyzing the data. For achieving the study aim, the varia-

bles were compared using either One-Way ANOVA Test, for

comparing the four methods for normally distributed variables, or

Kruskal-Wallis Test, for non-normally distributed variables (non-

Characteristics
NL

N=37
DFD
N=35

UCD
N=40

AD
N=46

p-
value

Gender

Male

N (%)
32 (87) 27 (77) 27 (68) 36 (78)

0.28
Female
 N (%)

5 (13) 8 (23) 13 (32) 10 (22)

CGPA

Min-

max

2.03 -

3.97

2.34 -

3.91

2.09-

3.75

2.09 -

3.85
0.08

Mean 3.2 2.9 3.0 2.9

(SD) (0.51) (0.44) (0.36) (0.38)

48 International Journal of Engineering & Technology

parametric test). A p-value that is lower than 0.050 is considered

statistically significant.

5.2 Experimental results

The compared dependent variables are: the subject facet, usage

facet, IT system facet, sum system context, development context,

requirements engineering context, sum of the whole exercise,

number of difficulties faced, as well as time spent.

The normality for these dependent variables was tested; all these

dependent variables except the number of difficulties and the time

spent were normally distributed for every participant group.

Therefore, we decided to use the One-Way ANOVA Test to com-

pare all normally distributed variables (Table 3), and the Kruskal-

Wallis test (non-parametric test) to compare the number of diffi-

culties and time spent (Table I).

Comparison results showed that the AD group had scored statisti-

cally significantly higher marks in all of the exercise questions

(sum system context, development context, requirement engineer-

ing context, and sum of the whole exercise). This indicates that

AD can be more effective in representing these dimensions for

developing the proposed system, as shown in Table 3 and Fig. 1.

Table 3: Comparison among NL, DFD, UCD, and AD for Normally Dis-

tributed Variables using One-Way ANOVA Test

Variables

NL

(N=37)

DFD

(N=35)

UCD

(N=40)

AD

(N=44)
p-value

Mean
(SD)

Mean
(SD)

Mean
(SD)

Mean
(SD)

Subject Facet
1.9

(0.59)
1.7

(0.70)
2.4

(0.74)
2.6

(0.72)
< 0.001

*

Usage Facet
1.9

(0.79)
1.2

(1.04)
2.5

(0.91)
2.7

(0.82)
< 0.001

*

IT-System Facet
1.0

(0.47)

0.9

(0.42)

2.2

(0.84)

2.4

(0.94)

< 0.001

*

Sum of System

Context

4.8

(1.22)

3.9

(1.28)

7.1

(1.43)

7.7

(1.83)

< 0.001

*
Development

Context

1.3

(0.67)

0.9

(0.69)

2.3

(0.79)

2.7

(0.87)

< 0.001

*
Requirement

Engineering

Context

1.1
(0.66)

0.7
(0.68)

1.7
(0.56)

1.8
(0.51)

< 0.001
*

Sum of Whole

Exercise

7.2

(1.46)

5.4

(1.80)

11.1

(1.91)

12.3

(2.57)

< 0.001

*

Note: “Bold-faced fonts to represent the best achievement; * Statistically
significant at 0.050 level”

Furthermore, the AD group has faced a statistically significant

lower number of difficulties than other groups. This indicates that

AD is easier and faster to understand than other methods, as

shown in Table 3. The DFD group performed the task faster than

the other groups, but this result was not statistically significant as

confirmed in Table 4. Fig. 1 shows the mean of scores in each

dependent variable.

Table 4: Comparison among NL, DFD, UCD and AD for non-Normally

Distributed Variables using Kruskal-Wallis Test

The overall study results reveal that the AD method is more effec-

tive and helpful than the other functional documentation methods.

This finding supports that AD could be clearer to understand, and

performs better in representing the functionality of the proposed

system, in the context of RE.

Fig. 1: Comparing the mean of the scores in each exercise section among

NL, DFD, UCD, and AD methods.

Comparing NL with DFD, the NL group scored higher than the

DFD group, and had fewer difficulties. Ibrahim et al. [6] reported

that the natural language is commonly used for documenting the

stakeholders' statements in the requirements elicitation activity. In

addition, it has also been found that using the language of the

customers to describe the software requirements is most effective

in gaining the customers understanding and agreement [7].

The DFD appeared to produce worse results than NL, UCD, and

AD. Furthermore, DFD has the lowest score in capturing the sys-

tem context (the subject facet, the usage facet, and the IT facet),

the development context, and the requirements engineering con-

text, as shown in Fig. 1. In addition, the DFD group had the high-

est number of difficulties, as shown in Fig. 1.

This study finding is supported by [8] as they emphasized that AD

represents a readable model and allows a hierarchical decomposi-

tion by using sub activity states. In addition, Dumas and Hofstede

[9] reported that activity diagrams have the ability to capture situa-

tions that emerging in practice, in which most of the commercial

work flow management systems cannot capture these situations.

One of the main advantages of AD is that AD contains the explicit

flow of logic of the software system [10]. Furthermore, Hnatkow-

ska and Grzegorczyn [11] conducted a controlled experiment

comparing NL, AD, and UCD. The results of their experiment

confirmed that AD has a less ambiguous interpretation than the

NL and UCD. AD specifications produced more correct interpre-

tations than UCD specifications. This supports our finding that the

AD method can be more effective than the other methods in the

context of the electronic market application domain.

In addition, the results indicate that the UCD does not perform as

well as the AD, as shown in Fig. 1. These results agree with [12]

as they confirmed that the UCD has sufficient ability to represent

all the development activities, as well as the interaction between

the software system and its environment.

6. Conclusion

The experiment result reveals that the AD participants had signifi-

cantly higher scores and lower number of difficulties than those

who used the other functional documentation methods. In addition,

AD had the best performance in representing the requirements

engineering context, system context, and development context.

Therefore, the activity diagram (AD) is the best documentation

method for representing the functional software architecture.

These results will help requirements engineers to select a better

functional documentation method for documenting the stakehold-

ers’ requirements.

Acknowledgment

The authors would like to thank the experimental subjects for their

cooperation, and the Multimedia University (MMU) for financial

and technical support. Additionally, we would particularly like to

thank Dr. Maysaa Nemer for her help and support.

Variables

NL
(N=37)

DFD
(N=35)

UCD
(N=40)

AD
(N=44)

p-value
Median

(SD)

Median

(SD)

Median

(SD)

Median

(SD)

Number of
Difficulties

2.0
(2.32)

5.0
(2.94)

2.0
(0.85)

1.0
(0.72)

< 0.001*

Time Spent

(mm:ss)
28:19

(08:31)

25:33

(08:56)

28:50

(17:55)

28:18

(09:47)
0.608

International Journal of Engineering & Technology 49

References

[1] K. Pohl and C. Rupp, Requirements Engineering Fundamentals: a

study guide for the certified professional for requirements engineer-
ing exam-foundation level – IREB compliant, 2nd ed., USA: Rocky

Nook Inc, 2015.

[2] H. S. Jabbar and T. V. Gopal, “Qualitative analysis model for soft-
ware requirements driven by interviews,” J. Eng. Appl. Sci., vol. 2,

no. 1, pp. 1–9, 2007.

[3] C. S. Murugan and S. Prakasam, “Stakeratreet: a new approach to
requirement elicitation based on stakeholder recommendation and

collaborative filtering,” Res. J. Appl. Sci., vol. 10, no. 10, pp. 574–
586, 2015.

[4] K. A. Michael and K. A. Boniface, “Inadequate requirements engi-

neering process: a key factor for poor software development in de-
veloping nations: a case study,” Int. J. Comput. Electr. Autom.

Control Inf. Eng., vol. 8, no. 9, pp. 1462–1465, 2014.

[5] S-B. Ho, “Framework documentation with patterns: an empirical
study,” PhD thesis, Multimedia University, Cyberjaya, Malaysia,

Feb. 2008.

[6] N. Ibrahim, W. Kadir, and S. Deris, “Documenting requirements
specifications using natural language requirements boilerplates,” in

Proc. MySEC’14, 2014, p. 19–24.

[7] T. Bures, P. Hnetynka, P. Kroha, and V. Simko, “Requirement
specifications using natural languages,” Charles Univ., Prague,

Czech Republic, Tech. Rep. D3S-TR, 2012.

[8] J. Barros and L. Gomes. (2000) From activity diagrams to class di-
agrams. [Online]. Available:

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.23.34&re

p=rep1&type=pdf
[9] M. Dumas and A. H. M. Hofstede, Ed., The Unified Modeling Lan-

guage. Modeling Languages, Concepts, and Tools: UML Activity

Diagrams as a Workflow Specification Language, ser. Lecture
Notes in Computer Science. Toronto, Canada: Springer, 2001, vol.

2185.

[10] D. Kundu and D. Samanta, “A novel approach to generate test cases
from UML activity diagrams,” J. Object Technol., vol. 8, no. 3, pp.

65–83, 2009.

[11] B. Hnatkowska and M. Grzegorczyn, “Empirical comparison of
comprehensibility of requirement specification techniques based on

natural languages and activity diagrams,” in Proc. MSVVEIS'12,

2012, p. 27-36.
[12] R. Boudour and M. T. Kimour, “Model transformation for require-

ments verification in embedded systems,” Asian J. Inf. Technol.,

vol. 4, no. 11, pp. 1012–1019, 2005.

https://link.springer.com/bookseries/558
https://link.springer.com/bookseries/558

