

Copyright © 2018 P. Vijaya Lakshmi et al. This is an open access article distributed under the Creative Commons Attribution License, which

permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

International Journal of Engineering & Technology, 7 (1.1) (2018) 311-313

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET

Research paper

Hadoop high availability through multiple active name nodes

P. Vijaya Lakshmi 1, K.V.S Ramesh 2 *, P. Likhitha 2, M. Pranay Kumar 2

1 Assistant professor, Department of Computer Science and Technology, Koneru Lakshmaiah Education Foundation

2 Department of Computer Science and Technology, Koneru Lakshmaiah Education Foundation

*Corresponding author E-mail: Rameshkadiyala143@gmail.com

Abstract

HDFS having only single dynamic name node, if that name node occur hardware or software failure, the entire HDFS model will be inac-

tive position until the recovery of name node. So that to reduce that problem the standby name nodes are placed, which they are an inac-

tive position. On failover occur to primary name node all its metadata will transfer to the standby name nodes. After primary name node

fails remaining standby nodes elects one of the nodes to take the position of primary name node. But on transferring the metadata to re-

maining standby name nodes there will be heavy burden to the primary name node

 In this paper, we proposed a solution to reduce the load on the primary name node by transferring the metadata to remaining standby

name nodes. We compress the entire metadata in the primary name node and sent that data into remaining all standby name nodes.

Keywords: Name Node; Standby Nodes; Scalability; Availability; Hot Standby.

1. Introduction

Hadoop Distributed File System (HDFS) is the basic storage sys-

tem utilized by Hadoop applications. HDFS [5] is to distribute the

files that provide the high-performance [4] access to data in the

entire hadoop cluster. The HDFS has low cost hardware, so a bit

failures in server are common in the cluster.

1.1. Name node

If Client needs to store data, then the client sends that information

to name node. The client's duty is to read/write the data from data

nodes. If the data be large file then the client divide that large file

into blocks of 64MB or 128MB. The client sends a request to the

name node to assign the 64MB or 128MB block with replication

of three to write the data in it directly. Then name node [4] will

assign the data node addresses to the client to store each block of

data in multiple locations (Usually 3). That means the name node

will act as a mediator between client and data nodes and also the

name node will coordinate everything around the cluster. Then the

client will send the block of information to the one data node. If

data is successfully stored in data nodes at that time the name node

sent the acknowledgement to the client that the data be successful-

ly delivered. And also the name node [4] will act as a server that

addresses the data in the data node.

Fig. 1: Master Name Node.

1.2. Data nodes

The client writes data in one data node, then that data node will

send the same data to the second data node. After receiving data

from the first node it forwards same data to next data node. Be-

cause it is easy to access data and also if the data be lost or cor-

rupted then the client will retrieve data from remaining data nodes.

As shown in figure 2, this type of process is called Replication

Factor. And the data nodes will also occur fault tolerance [3] to

reduce that problem data node will send a heartbeat message to

name node for every 3sec this is the way of saying that the data

node is still in active position.

If the heartbeat message comes, then the name node will identify

that data nodes are an inactive position, if not the data nodes are

inactive position then name node will wait 10 minutes if any

heartbeat message will come. At that time also the name node

doesn’t get the heartbeat message then it think that the data node is

dead the data node will be alive and there was only a network

http://creativecommons.org/licenses/by/3.0/

312 International Journal of Engineering & Technology

failure, but the name node will treat both as same. It cuts the con-

nection between that particular data node.

Fig. 2: Data Nodes.

2. Secondary name node

In HDFS, there are 2 name nodes Primary Name nodes [10] and

Secondary Name node. Primary Name node [4] acts as a mediator

between Client and Data node's and it shows the client where the

data present in data nodes. And all information about data is pre-

sent in name node. So, it is easy to access data or retrieve data.

Data node is nothing but accessing data from the client in the

presence of name node. If the primary name node is dead the en-

tire cluster is dead. Name node is only the point of failure [3] that

means if it fails the whole cluster will stop working. So, here if

primary name node is dead the entire cluster be in an inactive

position at that time it is difficult for the client to retrieve data

from data node.

To reduce this problem there is a Secondary name node will be

there but how to store all data addresses to secondary name node.

To know that we need to know what operation be done in primary

name node. So first, we need to know about the metadata. Metada-

ta [2] data is a set of data that elucidate and gives information

about another data and there are two files related to metadata is 1)

FsImage 2) Edit Log.

File system Image is nothing but an image of the file system on

initial point of the name node. Whereas the Edit Log is the modi-

fications made to the file system after starting the name node. The

primary name node it manages all the requests for write and a part

of requests for read from HDFS [5] customer and the remaining of

name nodes called hot standby and they are all read-only.

 Secondary name node is the standby name node which is not in

dynamic position. Since it doesn't react to any requests of write or

read all it requires is to do regularly fetch File system image also

to Edit Log from primary name node and combine them into a

new File system image. At the point, when name hub runs a par-

ticular measure of period and changes recorded in Edit Log that

would be converged with File system image, so that name node

could have current file HDFS metadata [2]. And after combining,

the changes from Edit Log to file system Image, name-node de-

letes the previous File system Image copy and replaces it with a

more up to date one as it has new File system Image.

 Which points to the present state of HDFS and then it shows up

the newer Edit Log. So, when failover occurs Secondary name

node read metadata from File system image and Edit Log from its

local disk, then take the responsibility of initial name node and

react to requests from HDFS users.

3. Cluster with multiple active name nodes

As Shown in figure 3, the Client has shared so much of data to

data nodes in the presence of name node if that name node occurs

the failover then the entire data will be corrupt. In order to reduce

that secondary name node will present.

Fig. 3: Secondary Name Node.

4. Existing system

The cluster utilizes single writer multiple reader procedures. One

name node called primary name node, it manages entire the re-

quests of write and a bit of read requests from HDFS customers,

the remaining name nodes are called hot standby name node, they

are all read-only, which implies they could just serve the read

requests.

The burden is that the standby name node is not dynamic. In exist-

ing system all name nodes are active. The primary name node

sends all its metadata [2] to remaining standby name node. The

primary name node accepts both read and write requests so that it

writes the metadata from its local disk and writes to all standby

name nodes local disk. This process is called metadata replication

[2].

The failover happens only when initial name node is down. The

hot standby name nodes are in charge of requests of read, so that

failing of those will not affect the entire HDFS.

The 2 stages that failover will occur are IP address and leader

election progress [1]. IP address progress is generally simple in N-

cluster. As the primary name node of HDFS is accessed through

IP address. At the point when a hot standby is elected and takes

role as the new primary node, it changes its IP address to the old

primary node IP address, so that it can take over all communica-

tions with other nodes. I.e. hot standbys and data nodes [14].

Leader election [1] will be simple hence all metadata over each

name nodes are indistinguishable. At the point when the primary

name node meets failures, it is possible to pick any another hot

standby arbitrarily as the new primary node. The details of leader

election, assume N-Cluster contains ‘N’ hot standby name nodes,

Firstly we assign an increasing sequence of number to each of the

hot standbys, say 1 to N when hot standbys trust the essential is

out of work. After that, the standby name nodes believe that the

primary name node is out of work i.e. they have not received the

acknowledgement of their heartbeat from primary name node for a

quite a while. The hot standby with the most elevated number

convey a message to check which hot standby name node has the

most recent metadata, [2] at that point it sends this name node's

number to the all of the standby to guarantee that each hot standby

can understand where to synchronize the most current metadata,

when the synchronization procedure is done the hot standby with

the most elevated number transforms into the new primary node

and takes charge of write request.

International Journal of Engineering & Technology 313

Fig. 4: N-Cluster.

5. Proposed system

We proposed a system that the primary name nodes have a backup

name node. If the primary name node writes its metadata [2] to the

backup name nodes then there will be a heavy load on the primary

name node. Because it takes the portion of both read and write

request and also it sends its metadata to standby name nodes so

that there will be a load on it. To reduce that load on the primary

name node we compress the metadata in the primary name node

and writes that compressed data into standby name nodes so that

the load will be reduced in primary name node [4]. If any modifi-

cation is done by the client then the primary name node will send

that modification to the remaining name node so that all the name

nodes are up-to-date.

After that, the primary name node will not in active position then

the standby name nodes which having highest number will take

charge of the primary name node and the new primary node will

send that information to all remaining standby name nodes.

Fig. 5: Master Node with Slave Node.

6. Conclusion

In this paper, the name node writes its metadata[2] into all standby

name nodes so that there will be a load on the primary name node,

to reduce that load in primary name node we proposed a model to

have the high accessibility for name node through load balancing.

We proposed a solution that we compress the entire metadata in

the primary name node and sent that data into remaining all

standby name nodes [1]. On doing this process the name node will

reduce the load on it. So that the cluster works efficiently and

good throughput [1].

Acknowledgement

We would like to thankful Mrs P. Vijaya Lakshmi for making our

review paper to be completed in time with her valuable sugges-

tions.

References

[1] Wang, Z. and Wang, D., 2013, November. NCluster: Using

Multiple Active Name Nodes to Achieve High Availability for
HDFS. In High Performance Computing and Communications &

2013 IEEE International Conference on Embedded and Ubiquitous

Computing (HPCC_EUC), 2013 IEEE 10th International
Conference on (pp. 2291-2297). IEEE.

[2] Wang, F., Qiu, J., Yang, J., Dong, B., Li, X. and Li, Y., 2009,

November. Hadoop high availability through metadata replication.
In Proceedings of the first international workshop on Cloud data

management (pp. 37-44). ACM.
https://doi.org/10.1145/1651263.1651271.

[3] Varghese, Lino Abraham, V. P. Sreejith, and S. Bose. "Enhancing

NameNode fault tolerance in Hadoop over cloud environment."
In Advanced Computing (ICoAC), 2014 Sixth International

Conference on, pp. 82-85. IEEE, 2014.

[4] Khan, Mohammad Asif, Zulfiqar A. Memon, and Sajid Khan.

"Highly Available Hadoop NameNode Architecture." In Advanced
Computer Science Applications and Technologies (ACSAT), 2012

International Conference on, pp. 167-172. IEEE, 2012.

https://doi.org/10.1109/ACSAT.2012.52.
[5] Foley, Matt. "High availability HDFS." In 28th IEEE Conference

on Massive Data Storage, MSST, vol. 12. 2012.

[6] Wan, J., Liu, M., Hu, X., Ren, Z., Zhang, J., Shi, W. and Wu, W.,
2012, December. Dual-JT: Toward the high availability of

JobTracker in Hadoop. In Cloud Computing Technology and

Science (CloudCom), 2012 IEEE 4th International Conference
on (pp. 263-268). IEEE.

[7] Oriani, A. and Garcia, I.C., 2012, October. From backup to hot

standby: High availability for hdfs. In Reliable Distributed Systems
(SRDS), 2012 IEEE 31st Symposium on (pp. 131-140). IEEE.

[8] Aung, Ohnmar, and Thandar Thein. "Enhancing NameNode Fault

Tolerance in Hadoop Distributed File System." International
Journal of Computer Applications 87, no. 12 (2014).

https://doi.org/10.5120/15264-4020.

[9] Kim, Y., Araragi, T., Nakamura, J. and Masuzawa, T., 2014,
October. A Distributed NameNode Cluster for a Highly-Available

Hadoop Distributed File System. In Reliable Distributed Systems

(SRDS), 2014 IEEE 33rd International Symposium on (pp. 333-
334). IEEE. https://doi.org/10.1109/SRDS.2014.61.

[10] Bi, Kun, and Dezhi Han. "Scalable Multiple NameNodes Hadoop

Cloud Storage System." International Journal of Database Theory
and Application 8, no. 1 (2015): 105-110.

https://doi.org/10.14257/ijdta.2015.8.1.12.

[11] Devi, S., and K. Kamaraj. "Architecture for Hadoop Distributed
File Systems." Architecture 3, no. 10 (2014).

[12] Le, Hieu Hanh, Satoshi Hikida, and Haruo Yokota. "NameNode

and DataNode Coupling for a Power-proportional Hadoop." Book
name Database Systems for Advanced Applications Lecture Notes

in (2013).

[13] Shvachko, Konstantin, Hairong Kuang, Sanjay Radia, and Robert
Chansler. "The hadoop distributed file system." In Mass storage

systems and technologies (MSST), 2010 IEEE 26th symposium on,

pp. 1-10. IEEE, 2010.
https://doi.org/10.1109/MSST.2010.5496972.

[14] Oriani, Andre, and Islene C. Garcia. "From backup to hot standby:
High availability for hdfs." In Reliable Distributed Systems (SRDS),

2012 IEEE 31st Symposium on, pp. 131-140. IEEE, 2012.

https://doi.org/10.1109/SRDS.2012.33.
[15] Donvito, Giacinto, Giovanni Marzulli, and Domenico Diacono.

"Testing of several distributed file-systems (HDFS, Ceph and Glus-

terFS) for supporting the HEP experiments analysis." In Journal of
Physics: Conference Series, vol. 513, no. 4, p. 042014. IOP Pub-

lishing, 2014.

https://doi.org/10.1145/1651263.1651271
https://doi.org/10.1109/ACSAT.2012.52
https://doi.org/10.5120/15264-4020
https://doi.org/10.1109/SRDS.2014.61
https://doi.org/10.14257/ijdta.2015.8.1.12
https://doi.org/10.1109/MSST.2010.5496972
https://doi.org/10.1109/SRDS.2012.33

