
 
Copyright © 2018 S. K. HariKarthik et al. This is an open access article distributed under the Creative Commons Attribution License, which 

permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 
 

 

International Journal of Engineering & Technology, 7 (1.3) (2018) 95-99 
 

International Journal of Engineering & Technology 
 

Website: www.sciencepubco.com/index.php/IJET  
 

Research paper 
 

 

 

 

Enhancement of regression testing using genetic data  

generation and test case prioritization using  

m-ACO technique 
 

S. K. Harikarthik 1*, P. Ramanathan 2, V. Palanisamy 3 

 
1 Assistant Professor, Dept. of Information Technology, INFO Institute of Engineering, Coimbatore, Tamilnadu, India  

2 Professor, Dept. of ECE, Madanapalle Institute of Technology & Science, Madanapalle, Chittoor District, Andhra Pradesh, India 
3 Principal [Retd], INFO Institute of Engineering, Coimbatore, Tamilnadu, India. 

*Corresponding author E-mail: sk.harikarthik@gmail.com 

 

 

Abstract 
 

The changes that occur during the software development process is rapid. Hence software has to undergo modification frequently. Due to 

this modification, the cost for testing increases due to repetitive retesting. This retesting process is called as the regression testing. Modi-

fication made in the single test case will make the side effect in all other related test cases. In order to overcome this problem all the test 

cases have to be retested again and again whenever the changes are incorporated in the software. But testing all the test cases is time 

consuming and will also increase the cost of testing. To address this problem, this work focuses on providing priority to the test cases. 

Test case which had more effect to changes is assigned with higher priority and the test case which had the less effect to changes is as-

signed lower priority. For test case prioritization, we employ m-ACO (Modified Ant colony optimization) method. Test case prioritiza-

tion is done in two ways namely “Triangle classification problem” and “Quadratic Equation Problem”. Flow of the data in the test case is 

done by Genetic Algorithm. This identifies the changed code in the program under test. It identifies both indirectly and directly affected 

def-use association in the modified part of the software by using forward walk algorithm and backward walk algorithm. 

 
Keywords: Regression Testing; Fault Coverage; Genetic Algorithm; Dataflow Testing; Def-Use Association. 

 

1. Introduction 

Automation and need for software tools is drastically increasing in 

the current scenario. Most of the services are automated with 

computer software. Hence more skills are essential to architect the 

software and test it. But regressive testing process requires skill, 

time, effort and cost. Many research techniques are proposed to 

reduce the time and cost encountered in retesting process. Test 

case prioritization is an effective way to manage the test suite by 

appropriately scheduling the order of executing the test cases. The 

test suite prioritization is an important phase in regression testing, 

which rearranges the execution sequence of the test cases to detect 

the faults early with minimum effort [4] [5]. Kamna Solanki et al 

have reported test case prioritization technique by employing 

modified Ant colony optimization algorithm [1]. Their method 

alters the selection behaviour of the food sources by ants. After 

selection with prioritization, test cases are tested based on data 

flow in the modified test case. Dataflow analysis is done using 

genetic algorithm. It determines directly and indirectly affected 

def-use associations in the changed portion of the software by 

using backward walk and forward walk algorithm. 

2. Literature review 

Ant Colony Optimization (ACO) [20] is a meta-heuristic approach 

utilized for comprehending combinatorial streamlining issues. It 

has been effectively used to take care of numerous tricky optimi-

zations issue. Simulated ants are effectively connected to yield a 

respectable amount of provisions, prompting universe class exhi-

bitions for issues such as vehicle routing, quadratic assignment, 

scheduling, successive ordering, directing to web like networks 

and more. 

Li et al [14] connected different meta-heuristics to experiment 

prioritization, mound climbing algorithm, hereditary algorithm 

and greedy algorithm. Rothermel et al. [3] attended to the issues 

identified with prioritization for expansive programming im-

provement situations. He settled down on an experimental study 

for analysing the effect about the measure of decrease in test suite 

and identified the shortcomings. 

Walcott et al. [21] recommended algorithm with calculation 

greedy, additional greedy, 2-optimal, mound climbing and heredi-

tary calculation for experiment streamlining. They acknowledged 

those taking into account three scope measurements independently 

(three solitary destination approaches): Average Percentage Block 

Coverage (APBC), Average Percentage Decision Coverage 

(APDC) and Average Percentage Coverage Statement (APCS). 

Their work reported that hereditary calculation will be superior to 

others for smaller projects and extra greedy, two-optimal algo-

rithm are suited for large projects. 

Singh et al. [1] exhibit a methodology of experiment prioritization 

issue dependent upon run time duration. The suggested ACO built 

calculation thinks of n ants, the place n specifies about test situa-

tions. The introductory vertebrate fossil science is decided hap-

hazardly and the edges of the chart will be secured would haphaz-

ardly picked by those ants around ones Hosting greatest phero-

mone. 

http://creativecommons.org/licenses/by/3.0/


96 International Journal of Engineering & Technology 

 

3. Objective 

All paragraphs must be justified alignment. With justified align-

ment, both sides of the paragraph are straight. 

On the premise about gap recognized from literature review, the 

targets for this work are: 

• To review and understand the variety of presented technique 

for test case prioritization. 

• To experiment Ant Colony Optimization technique for test 

case prioritization. 

• To generate the test data by using Genetic algorithm 

• Propose agenda for test case prioritization based on state-

ment coverage using ACO algorithm and to test with data 

generated using Genetic Algorithm 

4. Prioritization techniques 

The m-ACO test case prioritizations are explained as follows [1]. 

a) m-ACO 

m-ACO method is a technique employed to solve the test case 

prioritization problem. If there are ‘n’ test cases in the original test 

suite ‘T’ comprising of ‘M’ faults, we assure that number of modi-

fied ants in equal number of test cases for solution generation. Let 

Ti indicate the ith test case in the test suite ‘T’. The probability of 

test case sequences is indicated as Sk1 for k-1 test cases selected 

after modification. First n modified ants are placed in alternative 

test sequence ‘S1’. Fig. 1 shows the m-ACO model for test case 

prioritization. 

 

 
Fig. 1: M-ACO Model for Test Case Prioritization. 

 

Fig. 2 describes how the real ants select the kind of food source 

which comes across randomly, while modified ant moves random-

ly and selects only those food source that are unique. Actually 

natural ants will always select the food source which is at shortest 

distance until it finishes food. Here by using m-ACO concept we 

are making the ants to select the foods that are of good quality 

located at the nearest site. 

By adopting this concept, test case nodes are selected randomly by 

each of the modified ants in next sequence, until all faults are 

found by every modified ant. 

 

 
Fig. 2: Food Source Selection Behaviour of Natural and Modified Ants. 

 

b) Evaluation based on experiment by using m-ACO technique 

The proposed m-ACO technique for test case prioritization has 

been experimentally evaluated using two case studies reported in 

[5]. Two parameters that are considered for experimental evalua-

tion are 

• Average Percentage of Fault Detection [APFD] 

• Percentage of Test suite Required for complete fault cover-

age [PTR] 

APFD is used to identify the maximum fault detection rate by 

using a combination of test suites. The Average Percentage Fault 

detection is expressed as 

 

( 1 2 ... ) 1
1 ( )

2

TF TF TFm
APFD

mn n

  
    

 

Where ‘T’ is the test suites that need to be evaluated, ‘m’ repre-

sents the number of faults in an application under test and ‘n’ rep-

resents the total number of test cases in the test suite. TFi repre-

sents the location of the ith test case in test suite T that reveals the 

fault ‘i’.  

PTR is used to measure the effectiveness of the test suite prioriti-

zation technique. If PTR value is low then, it is a better prioritiza-

tion technique. 

 

100
NTCFC

PTR X
n

  

 

Where NTCFC represents the number of test cases needed for 

complete fault coverage. 

c) Triangle classifier problem 

Triangle classifier problem takes three sides of a triangle as an 

input and classifies the triangle as equilateral or scalene or isosce-

les triangle or not a triangle based on the input [1]. 

The sample test suite taken for triangle classifier problem com-

prises of 17 test cases in sequence 

{T1,T2,T3,T4,T5,T6,T7,T8,T9,T10,T11,T12,T13,T14,T15,T16,T

17} and 6 faults {f1,f2,f3,f4,f5,f6}. Table 1 refers the test suite for 

triangle problem with Execution Time (ET). 

 
Table 1: Faults Detected by Test Suite for “Triangle Classifier Problem” 

 f1 f2 f3 f4 f5 f6 ET 

T1 *  *   * 5 

T2 * * *   * 2 

T3 * * *   * 3 
T4 * * * *   4 

T5 * * * * *  5 

T6 * * *   * 3 
T7 * * *   * 6 

T8 *  *   * 4 

T9 * * *   * 5 
T10 * * *   * 3 

T11 * * * * *  8 

T12 * * *   * 4 
T13 * * *   * 6 

T14 *  *   * 3 

T15 * * *   * 2 
T16 * * *   * 3 

T17 *  *   * 5 

 

After prioritization we attain the following result sequence as {T5-

T2-T1-T3-T4-T6-T7-T17-T8-T9-T12-T15-T16-T10-T13-T14-T11} 

with an APFD value of 0.96 which is high compared to random 

sequence prioritization. 

d) Quadratic Equation Problem 

It is the famous software testing problems which takes the three 

variables of the equation as input and may produce the real roots 

or equal roots or imaginary roots. A simple test suite for quadratic 

equation problem comprises of 19 test cases in sequence of {T1, 

T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, 

T16, T17, T18, T19} and 9 faults named {f1, f2, f3, f4, f5, f6, f7, 

f8, f9} 

 

 
 



International Journal of Engineering & Technology 97 

 
Table 2: Fault Detected by Test Suite for “Quadratic Equation Problem” 

 f1 f2 f3 f4 f5 f6 f7 f8 f9 ET 

T1 * *        3 
T2   *     * * 5 

T3 *   *   *  * 2 

T4 *   * *    * 6 
T5 *   *  *  *  3 

T6 *  *    *   * 4 

T7 * *        2 
T8          6 

T9 *   * * * *   4 
T10 *  *  * *  *  7 

T11 * *   * *   * 3 

T12 *   * * *  *  2 
T13  *   *     7 

T14  * *       3 

T15  *   *  *  * 5 
T16 *   * *  *  * 6 

T17 *   * * *   * 3 

T18 *  *  * *  *  4 
T19  *        1 

 

The above mentioned test was executed using m-ACO, the gener-

ated result test sequence attained is as follows 

{T9,T7,T2,T1,T5,T4,T10,T3,T6,T15,T12,T11,T14,T16,T19,T13,

T17,T18,T8} with an APFD value of 0.92. 

 

e) Genetic Algorithm based test data generation. 

 

The test-data generation using genetic algorithm is explained as 

follows: 

i) Representation 

The algorithm is represented by using a binary vector as a DNA 

and a Gene [chromosome] to represent the input variable x for the 

program. 

ii) Initial population 

The algorithm randomly generates POPSIZE m-bit strings for 

representing the initial population size. The POPSIZE value is 

determined by conducting the experiment. Each chromosome is 

converted as a K decimal value representing the values of T1....Tn 

where ‘T’ represents the test case. 

iii) Evaluation Function 

Algorithm evaluates the test cases {T1 ...Tn} by program execu-

tion with its input and it records the def-use paths in the program 

that are covered by this test case. The fitness value of each chro-

mosome v1 (i=1...., POPSIZE) 

is calculated as given below: 

 

. cov
_ ( )

.

i

i

No of def use path ered by V
Fitness value V

Total No of def use path





 

 

The test case which is represented by the chromosome Vi is con-

sidered effective if its fitness value (Vi) > 0. 

iv) Selection 

The selection of the test case is done by prioritization of test case 

by using the two methods namely triangle classification problem 

and quadratic equation problem. 

v) Recombination 

Here the algorithm uses two operators namely crossover and mu-

tation. 

5. Experiment and result 

In this section first prioritization is done based on the Triangle 

based problem and Quadratic equation problem. After prioritizing 

the test cases we will consider the following phases 

i) Analysis & instrumentation phase. 

ii) Affected def-use-pair generation phase. 

iii) Test data generation phase. 

 

 

iv) Experiment 1 

In the first experiment the test cases are prioritized using triangle 

based problem with the data generation process done by using 

Genetic Algorithm. Here GA is used twice, the first time to get 

test data needed to cover all def-use pairs, and second time to get 

test data to cover the faulty def-use pairs. Table. 3, given below 

represents the input test cases, number of de-fuse pairs to be cov-

ered, number of generations and def-use coverage. 

 
Table 3: Represents the Results of the Regression Testing Using GA for 
Test Cases Prioritized Using “Triangle Classifier Problem” 

Test Case 
after priori-

tization 

No. Of Def-use 

pairs to be cov-

ered 

No of Genera-
tions 

Def-use coverage % 

All Fault All Fault All Fault 

T5 11 5 7 3 100% 100% 

T2 7 4 3 1 55% 71% 
T1 12 3 8 1 100% 100% 

T3 10 4 6 3 100% 100% 

T4 15 4 10 2 100% 100% 
T6 13 4 9 1 60% 78% 

T7 10 4 4 1 100% 100% 

T17 7 3 5 1 100% 100% 
T8 14 4 7 2 63% 69% 

T9 12 4 5 2 60% 73% 

T12 8 5 4 3 100% 100% 
T15 21 4 2 1 100% 100% 

T16 19 4 7 1 100% 100% 

T10 24 3 8 1 100% 100% 
T13 17 4 3 2 78% 81% 

T14 14 4 4 2 100% 100% 

T11 20 3 3 1 81% 98% 

 

 
Fig. 3: Number of Def-Use Pairs in Each Test Cases. 

 

 
Fig. 4: Number of Required Generations. 

 

No. Of Def-use pairs

to be covered All

No. Of Def-use pairs

to be covered Fault

Test Case after prioritization

D
ef

-u
se

 p
a
ir

s 
co

u
n

t



98 International Journal of Engineering & Technology 

 

 
Fig. 5: Reduction Percentage of Def-Use and GA Generation. 

 

v) Experiment 2 

In the second experiment the test cases are prioritized using Quad-

ratic equation problem with the data generation process done by 

using Genetic Algorithm (GA). Here also GA is used twice, the 

first time to get test data needed to cover all def-use pairs, and 

second time to get test data to cover the faulty def-use pairs. Table 

4 given below represents the input test cases, number of defuse 

pairs to be coved, number of generations and def-use coverage. 

 
Table 4: Represents the Results of the Regression Testing Using GA for 

Test Cases Prioritized Using “Quadratic Equation Problem”. 

Test Case 
after priori-

tization 

No.Of Def-use 

pairs to be cov-

ered 

No of Generation 
Def-use cover-
age % 

All Fault All Fault All Fault 

T9 20 4 5 1 100% 100% 

T7 19 2 4 1 100% 100% 

T2 33 5 13 1 100% 100% 
T1 52 3 8 2 100% 100% 

T5 21 3 7 1 100% 100% 

T4 39 6 2 1 100% 100% 
T10 17 7 17 1 100% 100% 

T3 18 2 1 1 73% 81% 

T6 13 4 7 2 100% 100% 
T15 20 5 1 1 100% 100% 

T12 9 2 4 2 74% 79% 

T11 23 3 1 1 100% 100% 
T14 44 3 1 4 100% 100% 

T16 26 6 4 1 62% 71% 

T19 13 1 3 3 100% 100% 
T13 15 7 5 1 100% 100% 

T17 19 3 4 1 100% 100% 
T18 14 4 1 2 100% 100% 

T8 21 6 2 3 100% 100% 

 

 
Fig. 6: No.of Def-Use Pairs in Each Test Cases. 

 

 

 
Fig. 7: No. of Required Generation. 

 

 
Fig. 8: Reduction Percentage of Def-Use and GA Generation. 

 

From both the experiments we infer that the coverage percentage 

of fault def-use path by using GA is higher than the random path 

coverage. This is due to the fact that path coverage efficiency 

improves drastically because of test case prioritization. 

6. Conclusion and future work 

This paper presents an approach which employs test case prioriti-

zation with data generation for modified test case using GA. It can 

be used for both the object oriented programs and structural pro-

grams. First process prioritizes the test cases based on faults that 

occurred in the test case using triangle classifier problem method. 

After prioritization, fault occurred def-use paths are tested by us-

ing the test data generated by GA. Second process prioritizes the 

test cases based on faults that occurred in the test case using quad-

ratic equation problem method. After prioritization, fault occurred 

def-use paths are tested by using the test data generated by GA. 

The results reveal that def-use coverage percentage has been in-

creased drastically. 

In future the experiment can be done by using clustering method 

which separates the wanted test cases from the unwanted ones 

before prioritization.  

References 

[1] Kamna Solanki, Yudhvir Sing and Sandeep Dalal, Experimental 

Analysis of m-ACO Technique for Regression Testing, Indian Jour-

nal of Science and Technology, August 2016, vol 9(30). 
https://doi.org/10.17485/ijst/2016/v9i30/86588. 

[2] M.R.Girgis, A.S.Ghiduk and E.H. Abd-Elkawy., An Approach for 

Enhancing Regression Testing Using Genetic Algorithm And Data 
Flow Analysis, International Journal of Intelligent Computing and 

Information Science, April 2013, vol. 13 

[3] Rothermal, G., Untch, R.H., Chu, C. and Harold, M., Test Case Pri-
oritization, IEEE Transactions on Software Engineering, Vol. 27, 

No: 10, pp: 928-948, Oct. 2001. 

[4] Chandu PMSS, Sasikala T. Implementation of regression testing of 
test case prioritization, Indian Journal of Science and Technology 

2015 Apr; 8(S8):2903. 

https://doi.org/10.17485/ijst/2015/v8iS8/61922. 
[5] Leung H, White L. Insights into regression testing. Proceedings of 

the IEEE International Conference on Software Maintenance; 1989 

Oct. p. 60–9. 

Def-use

coverage

% All

Test Case after prioritization

D
ef

-U
se

 c
o
v
er

a
g

e 
%

https://doi.org/10.17485/ijst/2016/v9i30/86588
https://doi.org/10.17485/ijst/2015/v8iS8/61922


International Journal of Engineering & Technology 99 

 
[6] Solanki K, Singh Y, Dalal S. Test case prioritization: An approach 

based on modified Ant Colony Optimization. Proceedings of IEEE 

International Conference on Computer, Communication and Con-

trol; Indore, India. 2015 Sept. Available at IEEE-xplore Digital Li-

brary. 
[7] Beizer B. Software Testing Techniques. 2nd ed. India: Dreamtech 

Press; 2003. 

[8] Catal C, Mishra D. Test Case Prioritization: A systematic study. 
Software Quality. Journal. 2013; 21(2):445–78. 

https://doi.org/10.1007/s11219-012-9181-z. 
[9] Maheshwari V, Prasanna M. Generation of test case using automa-

tion in software systems: A review. Indian Journal of Science and 

Technology. 2015 Dec; 8(35):1–9. 
https://doi.org/10.17485/ijst/2015/v8i35/72881. 

[10] Maheswari RU, JeyaMala D. Combined genetic and simulated an-

nealing approach for test case prioritization. Indian Journal of Sci-
ence and Technology. 2015 Dec; 8(35):1–5. 

https://doi.org/10.17485/ijst/2015/v8i35/81102. 

[11] R. Gupta, M. J. Harrold, and M. Soffa, "Program slicing-based re-
gression testing techniques". J. Software Testing Verification Reli-

ability, Vol. 6, No. 2, pp. 83–111, June 1996. 

https://doi.org/10.1002/(SICI)1099-1689(199606)6:2<83::AID-
STVR112>3.0.CO;2-9. 

[12] G. Rothermel, and M. J. Harrold, "Analyzing regression test selec-

tion Techniques". IEEE Transactions on Software Engineering, Vol. 
22, No. 8, pp. 529–551, August 1996. 

https://doi.org/10.1109/32.536955. 

[13] A. Nanda, S. Mani, S. Sinha, M. J. Harrold, A. Orso, “Regression 
Testing in the Presence of Non-code Changes”, 2011 Fourth IEEE 

International Conference on Software Testing, Verification and 

Validation, pp. 21-30, 2011. https://doi.org/10.1109/ICST.2011.60. 
[14] Li, Z., Harman, M., and Hierons, R. M., Search Algorithms for Re-

gression Test Case Prioritization, IEEE Transactions on Software 

Engineering, Vol. 33, No: 4, April 2007. 
https://doi.org/10.1109/TSE.2007.38. 

[15] D. E. Goldberg, Genetic Algorithms in Search, Optimization and 

Machine Learning. Addison-Wesley, Reading, Mass., 1989.  
[16] X. MA, B. Sheng, and C. Ye "A Genetic Algorithm for Test-Suite 

Reduction" Lecture Notes in Computer Science, Vol. 3756, pp. 

253-262, 2005. https://doi.org/10.1007/11573937_28. 
[17] S. Nachiyappan, A. Vimaladevi, and C. B. SelvaLakshmi, "An Evo-

lutionary Algorithm for Regression Test Suite Reduction" Proceed-

ings of the International Conference on Communication and Com-
putational Intelligence, pp.503-508, 2010.  

[18] Y. Zhang, J. Liu, Y. Cui, X. Hei, and M. Zhang, "An Improved 

Quantum Genetic Algorithm for Test Suite Reduction" 2011 IEEE 
International Conference on Computer Science and Automation 

Engineering (CSAE), Vol. 2, pp. 149 – 153, 2011. 

https://doi.org/10.1109/CSAE.2011.5952443. 
[19] Annamalai, R., and J. Srikanth. "Accessing the Data Efficiently us-

ing Prediction of Dynamic Data Algorithm." International Journal 

of Computer Applications, Vol. 116, No. 22, 2015. 

[20] Aggarwal, K. K. and Singh, Y., Software Engineering, New Age 

International Publishers, 2005. 

[21] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf, “Design and eval-
uation of a wide-area event notification service”, ACM Transac-

tions on Computing Systems, Vol. 19, pp. 332–383, August 2001. 

https://doi.org/10.1145/380749.380767. 
[22] Z. Li, M. Harman, Hierons, and M. Robert, "Search algorithms for 

regression test case prioritization", IEEE Transactions on Software 

Engineering, vol. 33, No. 4, pp. 225–237, 2007. 
https://doi.org/10.1109/TSE.2007.38. 

[23] Walcott, K. R., Soffa, M. L., Kapfhammer, G. M., Roos, R. S., 
Time-Aware Test suite Prioritization, Proceedings of the Interna-

tional Symposium on Software Testing and Analysis, pp:1-12, 2006. 

https://doi.org/10.1007/s11219-012-9181-z
https://doi.org/10.17485/ijst/2015/v8i35/72881
https://doi.org/10.17485/ijst/2015/v8i35/81102
https://doi.org/10.1002/(SICI)1099-1689(199606)6:2%3c83::AID-STVR112%3e3.0.CO;2-9
https://doi.org/10.1002/(SICI)1099-1689(199606)6:2%3c83::AID-STVR112%3e3.0.CO;2-9
https://doi.org/10.1109/32.536955
https://doi.org/10.1109/ICST.2011.60
https://doi.org/10.1109/TSE.2007.38
https://doi.org/10.1007/11573937_28
https://doi.org/10.1109/CSAE.2011.5952443
https://doi.org/10.1145/380749.380767
https://doi.org/10.1109/TSE.2007.38

