

Copyright © 2018 Srinivasa Rao S et al. This is an open access article distributed under the Creative Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

International Journal of Engineering & Technology, 7 (1.1) (2018) 219-222

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET

Research paper

An effective method for improving software quality by

automated test generation technique

Srinivasa Rao S 1 *, Karthik Reddy T 2, Prasanna Sai N 2, Vamsi Krishna Ch 2

1 Assoc.Professor, Koneru Lakshmiah Educational Foundation

2 Student, Koneru Lakshmiah Educational Foundation

*Corresponding author E-mail: srinu1479cse@kluniversity.in

Abstract

The general undertaking of the product building is to guarantee conveyance of superb programming to the end client. To ensure great

programming, it is required to test programming. Testing is a critical constituent of programming building. In programming testing there

are number of fundamental issues like compelling age of experiments, prioritization of experiments which should be handled. This

mechanized test structure predominantly relies upon these four angles: test system, experiment age, test execution and test assessment.

Test methodology is an accumulation of systems that decides the testing way to deal with be trailed by the testing group. The experiment

age alludes to the age of experiments in light of the given application. The test execution briefs about the execution of those tests at that

point contrasting the normal outcome and genuine outcome. The test assessment explores the experiments and causes us to produce test

rundown report and programming quality confirmation report consequently. The aim of delivering this device is to produce test cases

naturally and to diminish the cost of testing notwithstanding collect the season of determining experiments physically. Subsequently this

framework enhances general nature of the product.

Keywords: Software Quality Assurance Report; Software Testing; Test Cases; Test Evaluation; Test Execution; Test Strategy; Test Summary Report.

1. Introduction

Programming testing is the noteworthy part in programming ad-

vancement life cycle and also it has an unequivocal influence in

guaranteeing programming quality. Test automation makes utiliza-

tion of specific programming to control the execution of tests and

to contrast the real outcome and anticipated outcome. Choosing

perfect time to go for automation, characterizing extension for

computerization and choosing the correct device for mechaniza-

tion are the vital choices in which the testing group must detail in

the test design. Indicating the correct subtle elements of the item

for mechanization very decides the triumph of the automation. The

viability of this confirmation and approval strategy relies on the

quantity of bugs recognized and settled before discharging the

framework [1]. It relies on the nature of experiments created. The

most huge issue in the field of programming testing research is the

age of the experiments in view of automation. To cut down the

cost of manual testing and to expand consistency of the testing, it

is basic to mechanize the experiment age [1]. Contingent on these

experiments, the test outline report and programming quality af-

firmation report will likewise be robotized. Test Summary Report

is a huge deliverable which is set up toward the finish of a testing,

or rather in the wake of testing is finished. The primary goal of

this test outline report is to elucidate diverse subtle elements and

exercises about the testing performed. Programming quality affir-

mation report assesses the nature of an item and finish adherence

to programming item norms and techniques. It is a sunshade

movement that guarantees agreement to measures and systems all

through the Software advancement life cycle of a product item.

In existing method, MBT strategy concentrates just on utilitarian

testing. It will apply specifically to useful testing not for security

testing. The MBT strategy doesn't totally create the programmed

test execution due to two reasons: I) the model produces test are

not finished on the grounds that the parameters can't be deter-

mined specifically. ii) Doesn't quickly executes the test got from

test demonstrate in light of the fact that the test show utilize di-

verse programming dialects.

In our proposed procedure, we utilize another apparatus strategy

called Model based Integration and System Test Automation

(MISTA) for producing test code from a Model Implementation

Description (MID). It will coordinate the utilitarian and security

testing. MID contains the Model Implementation Mapping (MIM)

and test show. The test models are practical model, get to control

model and security display. It utilizes the abnormal state petrinet

display for confirming the product framework. Test models

planned by the petrinet can incorporate the two information and

control stream of test models. MISTA can create programmed

display based experiments, including the test inputs and expected

test outcomes. MISTA demonstrates the relations of test models

and usage level for the test condition. It will consequently create

test code from test demonstrate.

2. Proposed system

The automation test structure is an execution situation for elec-

tronic tests. It is a fused structure that sets the tradition of comput-

erization for a specific item. A structure is a valuable mix of dif-

ferent techniques, programming principles, discernments, strate-

gies, traditions, framework chains of importance, seclusion, scope

component and test information infusions. These components go

http://creativecommons.org/licenses/by/3.0/

220 International Journal of Engineering & Technology

about as minor auxiliary areas which should be accumulated to

speak to an industry procedure .This structure furnishes the client

with various advantages that encourages them to create, perform

and declaration the computerization test contents productively.

These robotized tests can run rapidly and intermittently, which is

beneficial for programming items with an expanded administra-

tion life. This framework composes the test suites and thusly en-

hances the proficiency of testing. An organized test system helps

in taking out the duplication of experiments which is computer-

ized over the application.

A testing system is constantly autonomous of utilization and it can

be utilized with any application all things considered of issues

(like parts, stack, auxiliary plan and so on.) of use under test. Re-

cently created test cases are continually added to existing comput-

erization in relating to the advance of the product improvement. It

is vital to be cognizant that general scope of all tests by methods

for test automation isn't feasible. While choosing what tests should

be computerized premier, thus cost and exertion are required to be

considered. Experiments which contain high cost and low exertion

ought to be robotized early. At that point test cases with normal

utilize, changes, and past mistakes notwithstanding experiments

with low to direct exertion will be additionally computerized. Test

mechanization assuages analyzer's irritation and permits the test

execution without client contact while ensuring repeatability and

precision. Or maybe analyzers would now be able to concentrate

more on muddled test situations. Discretionarily produced tests

can discover abandons with high testability. This Test automation

structure enables us to perform diverse sorts of testing proficiently

and adequately.

This Testing structure is in charge of:

• Specifying the example in which to verbalize desires.

• Building a strategy to guide into or drive the application

under test.

• Perform the tests.

• Testify the outcomes.

Fig. 1: Test Framework for Software Quality Assurance- Architecture.

3. Automated code generation

3.1. Architecture

Fig.2 demonstrates the engineering of MISTA. The contribution to

the MISTA is MID determination, which incorporates the test

show and the MIM particular. The test show signifies the petrinet

display that contains utilitarian model, get to control demonstrate,

and the risk show. The useful model determines the capacity in the

framework, the entrance control demonstrate depicts the limita-

tions on the framework and the risk display demonstrates the secu-

rity arrangement in the framework. The MIM detail changes over

the test model to usage requirements. MISTA utilizes distinctive

dialects, for example, C, C++, HTML and so forth to create test

code. It bolsters a different scope criteria for experiment age.

MISTA is likewise extremely successful in the product blame

discovery.

Fig. 2: Architecture Diagram of MISTA.

3.2. Petrinet model

PrT nets are otherwise called abnormal state Petri nets. The past

work has likewise clarified that PrT nets can determining access

control techniques and security dangers. Since the test models

determined by PrT nets can coordinate the two information and

control streams of test prerequisites. MISTA can create pro-

grammed demonstrate based experiments, including the test inputs

and the normal test outcomes.

The age of test show from the PrT net diminishes the determina-

tion of substantial and invalid experiments. The petrinet is the

coordinated bipartite diagram, in which the hubs speak to spots

and changes. The coordinated circular segments depict in the pe-

trinet show in which places portrays are pre or post conditions for

the changes. It is otherwise called put/progress net. It is one of the

created numerical displaying dialects for the detail of conveyed

frameworks [1].

A petrinet has five tuples:

Where,

R - Limited arrangement of spots

S - Limited arrangement of changes

T - Limited arrangement of typical circular segment

U - Limited arrangement of inhibitor circular segment

L1 - Set of beginning markings

3.3. Model implementation mapping (MIM)

The MIM detail mapping the contributions of the test model to the

usage level execution. The objective of model-based testing is to

check whether a usage of a product framework identifies with the

model of that framework. The prerequisites and the test models

checks by the MIM determination in the execution organize. Via

naturally create the experiments and expected outcomes from the

detail of the framework, it requires a formal determination. At

times the formal determination is likewise executable by the nor-

mal outcomes acquired by executing the predefined particular with

the test inputs. The setting predicate indicated an information state

of the part that ought to be designed accurately before called by

the segment. For instance, the test age part of MISTA requires that

the scope standard be set before it is summoned. This can happen

by calling the mutator capacity of the predicate scope. The MIM

detail get the components from the petrinet model< R, S, T, U,

L1> utilized as a part of the objective dialect to the programming

TestModel MIM

MID

MISTA

Petrinet model

Test case

Functional
Model

Access
Control

Model

Threat
Model

Test code

International Journal of Engineering & Technology 221

dialects. MIM comprises of character of the framework, rundown

of concealed predicates in the test display and the mapping com-

ponents. The assistant code 'h' is utilized to create the test code. It

contains the header, setup techniques and created code.

3.4. Model implementation description (MID)

The contribution to the MISTA is known as a Model Implementa-

tion Description (MID) and it comprises of a test show and a

Model-Implementation Mapping (MIM). MID is the front end

dialect for MISTA, and gives the nuts and bolts for the computer-

ized test age approach. The MIM determination mapping the con-

tribution of the test model to the execution level develops. For the

MID strategy, the test code can be produced by MISTA for the

objective dialects, for example, Java, C#, C, C++, HTML and so

on in light of the different scope foundation of the test model, for

example, reachability scope, state scope, change scope, profundity

scope, and objective scope. Amid the improvement arrange, we

have connected MISTA to the useful testing to discover numerous

issues happen in the framework. This MISTA method has demon-

strated that it is extremely compelling in blame recognition of the

frameworks.

3.5. Test code

The objective dialect utilized as a part of the progress tree is uti-

lized to produce the test code. MISTA produces the test code from

the theoretical test from MIM determination [20]. The test code

created in the Selenium IDE can be consequently executed. Part-

ner code indicates to the test code that serves to the analyzer to

create the executable test code. Test code age is to change over the

progress tree to create the test code as per the MIM detail and the

assistant code. The framework under test quickly produces and

executes the test code. The created test code is as various target

dialects from a given info change tree. Different dialects can goes

about as a contribution to produce the test code. For instance,

Jfcunit is an expansion for JUnit for GUI testing of the Java pro-

grams.

4. Background

We utilize MISTA apparatus for practical and security testing. D.

Xu et al. [4] proposed a Threat Model-Implementation (TMID)

way to deal with robotized age of security tests by utilizing formal

risk models that can be indicated as Predicate/Transition nets. This

model creates assault ways. A formal risk driven approach of se-

curity dangers was portrayed by D. Xu et al. [5] that goes about as

the middle person between security objectives and utilizations of

the security highlights. Y. L. Traon et al. [6] gives a test driven

strategy and arrangement choice point to dissect the adaptability

of the framework. The security approach alteration can serves to

changes in the test code for adaptability. The property is character-

ized as the level of coupling in the middle of access control ra-

tionale and business rationale in the framework. H. Zhu et al. [7]

presents another strategy for test the product framework rely upon

abnormal state petrinets. For that approach utilize four testing

strategy called state arranged testing, stream situated testing,

change situated testing and determination arranged testing. All

systems are utilized an arrangement of compositions for examine

and create a testing comes about and different scope criteria. J.

Desel et al. [8] examined another idea called cause impact chart-

ing for produces the experiments and the test code. The abnormal

state petrinet goes about as a middle of the road level. The ap-

proach utilized for creating test from the limited state show was

proposed by A. masood et al. [9] and assessed the Role Based

Access Control (RBAC) arrangement. The test suite produced

from this model is reasonable for blame recognition. To maintain

a strategic distance from blame and increment security arrange-

ment W. Mallouli et al. [10] depicted a system called expanded

limited state machine.

To create test cases Alexander et al. [11] characterized the model

based approach. Jacques et al. [12] talked about the way to deal

with include security testing with the practical testing by utilizing

dialect articulation in display based approach. In a secluded inno-

vation, H. Huang et al. [13] determined and confirmed the security

strategies of the framework utilized the hued petrinet process. The

security arrangement of the module is considered as extremely

adaptable. Mortensen [14] indicated the hued petrinet model to

dissect the entrance control framework to produce the test code.

The principle qualities are that model is concentrate just on get to

control show, yet not for the intermediation between the entrance

control display and practical model. In our approach, the entrance

control display incorporates with the practical model. The security

testing utilized the assault trees requires generally the manual

work for change over the assault tree into security test. In our

work, to discover the blame happen in programming utilizing

model based testing.

5. Test generation technique algorithms

Model Generation Algorithm

Input: Group of Model Segments S, Meta-Model MM

Output: Group of Models L matched to MM

1) If there are unmasked Model Segments in S do

2) { construct an vacant model M

3) If the model size boundary is not extended (1) and M still

can

4) amplify do

5) { select an unmasked model segment MS in S

6) for all object segment OS in MS do

7) { search an object O which is occurrence of the class partly

specified by OS (3)

8) for each condition CT defined in OF on the attribute A do

9) { if A is an attribute (value division case) then

10) select a value and place it to P in O (5)

11) else (multiplicity division case)

12) { select a cardinality N following to CT (5)

13) if the category of A is a class then

14) discover N objects with a P category and put them to A in O

(3)

15) else uncover N values in the division of A and locate them

to A in O (5)

16) }}

17) append O to M

18) end of M until it is conformed to MM (2, 4)

19) }}

20) spot MS as enclosed

21) append M to L}

Test Generation Algorithm

Input: Test Generation gathering of Test Case Segments TS, clas-

sifications C, Managed Meta-Model MMM

Output: Group of Models L coordinated to MM

1) In the event that there are unmasked Model Segments in S

do

2) { develop an empty model M

3) In the event that the model size limit isn't broadened (1) M

still can

4) open up do

5) { select an unmasked demonstrate portion MS in S

6) for all protest fragment OS in MS do

7) { look through a protest O which is event of the class half-

way determined by OS (3)

8) for each condition CT characterized in OF on the property

A do

9) { if A is an attribute (value division case) then

10) select a value and place it to P in O (5)

11) else (multiplicity division case)

12) { select a cardinality N following to CT (5)

13) if the category of A is a class then

222 International Journal of Engineering & Technology

14) discover N objects with a P category and put them to A in O

(3)

15) else uncover N values in the division of A and locate them

to A in O (5)

16) add test generation based on category C,

17) Add Test generation set items, TS

18) Generate report.

19) }}}}}

6. Conclusion

The frameworks have displayed a method for computerized age

and execution of useful and security tests from a test show incor-

porating with the mapping from the components of the model to

the usage builds. The mapping makes it possible to change over

the model level tests into the executable type of test code. MISTA

strategy is exceptionally proficient and successful for producing

experiments and test code. The fundamental favorable position is

that the method can incorporates framework capacities; get to

control strategies and security show. This strategy can produce

executable test code and identify the blame happen in the frame-

work. Because of the specialized engineering, this strategy is any-

thing but difficult to present another test generator, target dialect

and test execution condition. The conceivable approach is to uti-

lize PrT nets for partner the changes with time interims same as in

Time petrinets. In future work, present documentations for true

frameworks and contrast the blame discovery and different scope

criteria.

References

[1] Mohammad Reza Keyvanpour, Hajar Homayouni and Hossein

Shirazee, “Automatic Software Test Case Generation: An

Analytical Classification Framework” at International Journal

of Software Engineering and Its Applications Vol. 6, No. 4,

October, 2012.

[2] Rosziati Ibrahim, Mohd Zainuri Saringat, Noraini Ibrahim and

Noraida Ismail, “An Automatic Tool for Generating Test Cases

from the System's Requirements” at Seventh International

Conference on Computer and Information Technology.

[3] Mr. Navnath Shete, Mr. Avinash Jadhav “An Empirical Study

of Test Cases in Software Testing” at ICICES2014 - S. A.

Engineering College, Chennai, Tamil Nadu, India.

[4] Isabella and Emi Retna, “Study Paper On Test Case Generation

For GUI Based Testing” at International Journal Of Software

Engineering & Applications, Vol.3, No.1, January 2012.

[5] Nicha Kosindrdecha and Jirapun Daengdej, “A Test Case

Generation Technique and Process”.

[6] Itti Hooda and Rajender Chhillar “A Review: Study of Test

Case Generation Techniques” at International Journal of

Computer Applications (0975 – 8887) Volume 107 – No. 16,

December 2014.

[7] Karambir and Kuldeep Kaur, “Survey of Software Test Case

Generation Techniques” at International Journal of Advanced

Research in Computer Science and Software Engineering

Volume 3, Issue 6, June 2013.

[8] Steven P. Reiss, “Towards Creating Test Cases Using Code

Search” at IEEE International Conference on Software

Maintenance and Evolution 2014.

[9] A. Masood, R. Bhatti, A. Ghafoor, and A. Mathur, “Scalable

and effective test generation for role based access control

systems,” IEEE Trans. Softw. Eng., vol. 35, no. 5, pp. 654–668,

2009. https://doi.org/10.1109/TSE.2009.35.

[10] W. Mallouli, J.M. Orset, A. Cavalli, N. Cuppens, and F.

Cuppens, “A formal approach for testing security rules,” in

Proc. 12th ACM. Symp. Access Control Models and

Technologies, 2007, pp. 127–132.

https://doi.org/10.1145/1266840.1266860.

[11] A. Pretschner, Y. L. Traon, and T. Mouelhi, “Model-based tests

for access control policies,” in Proc. 1st Int. Conf. Software

Testing Verification and Validation (ICST'08), Lillehamer,

Norway, Apr. 2008. https://doi.org/10.1109/ICST.2008.44.

[12] J. Julliand, P. A. Masson, and R. Tissot, “Generating security

tests in addition to functional tests,” in Proc. 3rd Int. Workshop

Automation of Software Test, 2008, pp. 41–44.

https://doi.org/10.1145/1370042.1370051.

[13] H. Huang and H. Kirchner, “Formal specification and

verification of modular security policy based on colored Petri

nets,” IEEE Trans. Depend. Secure Comput., vol. 8, no. 6, pp.

852–865, Nov./Dec. 2011.

https://doi.org/10.1109/TDSC.2010.43.

[14] K. H. Mortensen, “Automatic code generation method based on

coloured Petri net models applied on an access control system,”

in Application and Theory of Petri Nets. New York, NY, USA:

Springer-Verlag, 2000, pp. 367–386.

[15] A. Marback, H. Do, K. He, S. Kondamarri, and D. Xu, “A
threat model-based approach to security testing,” in Software:

Practice and Experience, Expanded Version of the AST'09

Workshop Paper, Feb. 2013, vol. 43, pp. 241–258.

https://doi.org/10.1109/TSE.2009.35
https://doi.org/10.1145/1266840.1266860
https://doi.org/10.1109/ICST.2008.44
https://doi.org/10.1145/1370042.1370051
https://doi.org/10.1109/TDSC.2010.43

