PAPR reduction for FBMC/OQAM using hybrid scheme of different Precoding transform and mu-law companding

Imad A Shaheen 1*, Abdelhalim zekey 1, Fatma newagy 1,Reem Ibrahim 2

1 Electronics and Communication Department, Faculty of Engineering, Ain Shams University, Cairo-Egypt
2 Embedded System Design Electronics Factory Department Cairo-Egypt
*Corresponding author E-mail: imadshaheen@gmail.com

Abstract

The filter banks multicarrier with offset quadrature amplitude modulation (FBMC/OQAM) is developing multicarrier modulation technique used in the next wireless communication system (5G). FBMC/OQAM supports high data rate and high band width efficiency. However, one of the major drawbacks of FBMC system is high peak to Average Power Ratio (PAPR) of the transmitted signal, which causes serious degradation in performance of the system. Therefore, it is required to use a proper PAPR scheme at the transmitter to reduce the PAPR. In this paper, a hybrid scheme is investigated with the combination of preceding transform technique and Mu Law Companding technique to reduce PAPR in FBMC systems. Moreover, four preceding techniques are examined to find the best Precoding technique which can be used with Mu law commanding. We assessed the discrete Hartley transform (DHT). The discrete cosine transformed (DCT), the Discrete Sine Transform (DST), and the Walsh Hadamard transforms (WHT) which are applied separately with Mu Companding. The numerical results verify that the FBMC systems with all Precoding technique combined with Mu law commanding can improve PAPR performance of the signals greatly with the best results achieved when the combination scheme consists of the DST Precoding and Mu law commanding for both PAPR and BER performance.

Keywords: FBMC/OQAM; PAPR; 5G; Precoding; Mu-Law Companding

1. Introduction

Multicarrier techniques have been used to support high data rate transmission for wireless communication. The orthogonal frequency division multiplexing (OFDM) technique is one of the most types of multicarrier modulation scheme used for wireless communication. However, the use of the cyclic prefixes (CP) with the OFDM symbol causes reduced spectral efficiency and reduced performance of the system. To overcome these disadvantages of OFDM systems, the filter banks multicarrier with offset quadrature amplitude modulation (FBMC/OQAM) technique has been established as a potential candidate multicarrier modulation scheme for the fifth generation (5G) wireless communication to support a high spectral efficiency and high data rate [6][10]. The high peak-to-average power ratio (PAPR) issue has appeared in all sorts of multicarrier communication systems, which caused serious degradation in performance from the system. Therefore, it is necessary to reduce it by using a proper reduction scheme at the transmitter.

In the literature, there have been several researchers focusing on the PAPR reduction of FBMC/OQAM systems [6-13][25-26]. Active constellation extensions (ACE) with projection onto convex sets (POCS) are used to reduce PAPR in FBMC system but it reduced BER performance [6]. PAPR reduction schemes originated on Active Constellation Extension (ACE), and tone reservation (TR) is presented [7]. The PTS [8], SLM [9], Potencies of trellis-based SLM [10] and Multi-Block Joint Optimization technique [11] are found to be effective in PAPR reduction. However, they require additional processing and often an increased implementation complexity of the system. Clipping and filtering techniques improve the PAPR, but they fail in BER [12], requiring advanced noise cancellation technique at the receiver.

In [13], the authors utilized the sliding window algorithm to improve the tone reservation (TR) scheme and it is acceptable for the PAPR reduction of FBMC/OQAM signal. The advanced technique based on Sliding window tone reservation, the SW-TR, cancel the peaks of the FBMC/OQAM. In [6], and [7], it has shown that the Mu-law companding schemes can reduce the PAPR in FBMC system better than the clipping approach but Mu-law transform still has a larger average power level and also still exhibits non-uniform distributions [8],[9]

In this paper, we proposed PAPR reduction schemes for FBMC system by using the combination of Precoding transform techniques and Mu-Law Companding technique. Therefore, we evaluate four types of Precoding technique namely the discrete Hartley transform (DHT), the discrete cosine transform (DCT), the Discrete Sine Transform (DST) and the Walsh Hadamard transform (WHT) which are applied separately to the proposed system with Mu companding to find the best combination scheme to reduce the PAPR for FBMC. The rest of paper is organized as follows: in section II, FBMC/OQAM system model is introduced, in section III, the PAPR theory in FBMC system is described, then in section IV, different Precoding transform techniques are explained, in section V Mu-law companding scheme is described, and in section VI the simulation results are presented. Last section VIII, concludes the paper.
2. FBMC/OQAM system model

In this section, the functions performed by the transmitter and receiver of the system will be mathematically modeled according to the system building blocks shown in Figure 1. The first function to be performed in the transmitter is to precede K QAM symbols in parallel. The output of the precoder will be phase rotated by multiples of pi/2 sequentially. The output signal vector is then transformed to the time domain by IFFT operation. The resulting K samples will be filtered by a filter bank for pulse shaping. The signal is then converted from parallel to serial form and compressed according to a standard compression law. The receiver performs the inverse operation to retrieve the QAM symbols from the received noisy and distorted signal. The inverse of the pulse shaping filter bank is a matched filter bank.

In the proposed FBMC system the information symbols are processed with K is total subcarriers used in FBMC system and M is time slots. FBMC/OQAM system is to transmit offset QAM symbols. The complex QAM data symbol s_{km} with kth subcarrier and mth time slot can be expressed as:

$$s_{km} = s_{km}^r + js_{km}^i$$

(1)

Where s_{km}^r is the real part of the complex data symbol and s_{km}^i is its imaginary part. To enable offset QAM modulation the real and imaginary parts of complex QAM symbols a_{km} are separated and arranged in a $K \times 2M$ matrix A as follows:

$$A = \begin{bmatrix}
a_{00} & a_{01} & \cdots & a_{0K-1} \\
a_{10} & a_{11} & \cdots & a_{1K-1} \\
\vdots & \vdots & \ddots & \vdots \\
a_{K-1,0} & a_{K-1,1} & \cdots & a_{K-1,K-1}
\end{bmatrix}$$

(2)

Where a_{km} denoted the transmitted QAM symbol, and A matrix can be rewritten to enable OQAM as follows:

$$A = \begin{bmatrix}
s_{00} & s_{01} & \cdots & s_{0K-1} \\
s_{10} & s_{11} & \cdots & s_{1K-1} \\
\vdots & \vdots & \ddots & \vdots \\
s_{K-1,0} & s_{K-1,1} & \cdots & s_{K-1,K-1}
\end{bmatrix}$$

(3)

The Precoding transform is applied to each column of matrix A, as

$$y_n = A \cdot a_n$$

(4)

Where P_g is a $K \times K$ Precoding matrix which used to spread the energy of symbols over the subcarriers assigned to the user and a_n is the nth column of A.

Precoding matrix can be written as

$$P_g = \begin{bmatrix}
P_{00} & \cdots & P_{0K-1} \\
P_{10} & \cdots & P_{1K-1} \\
\vdots & \ddots & \vdots \\
P_{K-1,0} & \cdots & P_{K-1,K-1}
\end{bmatrix}$$

(5)

(We will discuss in next section), a_n is the nth column of A. In the OQAM, the phase offsets are introduced as

$$b_n = \begin{bmatrix}
\delta_{n,0} \\
\delta_{n,1} \\
\vdots \\
\delta_{n,KM-1}
\end{bmatrix}$$

(6)

Where $J_n = \text{diag}([j, j^2, \cdots, j^{K-1}])$ then the transmitted precode FBMC signal is given as

$$x[n] = \sum_{m=0}^{K-1} \sum_{k=0}^{K-1} \delta_{n,m} g_m[n-mK/2] e^{2\pi knj}$$

(7)

Then

$$x[n] = \sum_{m=0}^{K-1} \sum_{k=0}^{K-1} \delta_{n,m} \tilde{g}_{km} g_m[n]$$

(8)

Where

$$g_m[n] = g[(n-mK/2)KM] e^{2\pi kn}$$

(9)

Where, and \tilde{g}_{km} is the kmth element of \tilde{G}, and $g[n]$ is the impulse response of the prototype filter with coefficients KM and the length of prototype filter as

$$L = KM - 1$$

(10)

The filter must satisfy the orthogonal condition restricted to the real field

$$\Re \left(\sum_{m=0}^{K-1} g_m[n] g^*_m[n] \right) = \delta_{n,0}$$

(11)

Where $\delta_{n,0}$ is the Kronecker delta and \Re stands for the real part.

We used the matrix form to describe the PolyPhase structure, thus let us denote the transmitted vector as

$$x = [x[0], x[1], x[2], \ldots, x[KM-1]]^T$$

(12)

And the prototype filter coefficients vector as

$$g = [g[0], g[1], \ldots, g[KM-1]]^T$$

(13)

Then we can rewrite the equation of Precoding FBMC/OQAM signal as

$$x[n] = \sum_{m=0}^{K-1} G^*_m F^*_m b_m$$

(14)

Where F_m^* is K point IFFT matrix In the above equation, b_m is the baseband signal in frequency domain, is first transformed into the time domain by multiplying it with inverse FFT matrix F_m^*. Then multiplying it by PolyPhase filter G_m. Finally, we obtain the transmitted Precoding FBMC/OQAM signal by summing all pulse shaped sub-symbol vectors. Since $b_n = J_n \delta_n = J_P a_n$. Equation (14) can be put in the form

$$x[n] = \sum_{m=0}^{K-1} G_m F_m^* J_P a_n$$

(15)

Then the Precoding FBMC signal x_n will be fed to the companding block so the output of the companding is expressed as

$$S[n] = C[x[n]]$$

(16)

Where $C[\cdot]$ is companding function which applied at end of the transmitter side (explain in next section)
Then the discrete transmitted Precoding FBMC/OQMA system with companding transform is expressed as

$$s[n] = \sum_{m} C_{G_i} F_{n} J_{m,k} P_{a}$$

Then the received signal can be written as

$$y[n] = h[n] * s[n] + \eta[n]$$

Where $\eta[n]$ is a vector of the additive white Gaussian noise (AWGN) and $*$ is the convolution operator, and $h[n]$ is the channel impulse response for a particular channel realization.

The recovered signal can be expressed as

$$r[n] = C^{-1}(y[n])$$

Where C^{-1} is the de-comapping Mu process, after the demodulation, the received signal can be expressed as

$$r_{x} = \eta_{x} + \eta'_{x}$$

where η_{x} is the useful signal

$$\eta_{x} = \sum_{m} \eta[n] g[(n-mK/2)KM] e^{j\frac{2\pi}{K}}$$

(17)

Since we recover the θ_{x} thanks to the real orthogonality then η_{x} can be written as follows

$$\eta_{x} = \sum_{m} \eta[n] g[(n-mK/2)KM] e^{j\frac{2\pi}{K}}$$

(18)

The Gaussian random variance can be expressed as

$$\sigma_{x}^{2} = \sum_{m} \eta[n] g[(n-mK/2)KM] = \sigma'_{x}$$

(19)

Where the normalization of the prototype filters implies

$$\sum_{m} g[(n-mK/2)KM] = 1$$

(20)

Since the Precoding matrix P is a unitary matrix and if there is no ISI and ICI the noise variance will not change neither after signal fed to FFT nor after the signal fed to the PolyPhase filter.

Finally after the de-precoding transform. The output symbol for the nth time slot is given by

$$d_{x} = P_{x} C^{-1}(\theta_{G_i} F_{n} J_{x}^{*})$$

(21)

Where P_{x} de-Precoding process at the receiver side is, F_{x} is FFT process, G_{x} is apolyphasefilterand $\theta_{G_i} F_{n} J_{x}^{*}$ is the real part of OQAM transmitted symbols. To guarantee perfect reconstruction in FBMC, The combined response of the transmit filter and received filter must be Nyquist pulse thus we used the square root
raised cosine (SRRC) filter to design a PolyPhase with length of
filter $L = KM$ where the coefficients are real and symmetric such that
g[n] = g[KM - n] \tag{29}

We chose the prototype filter, using SRRC filter where the frequency
response of SRRC filter is defined by
g(f) = \begin{cases}
T & \text{for } 0 \leq |f| \leq \frac{1-r}{2T} \\
\frac{1}{2} \cos \left(\frac{\pi f}{T} \right) & \text{for } \frac{1-r}{2T} \leq |f| \leq \frac{1+r}{2T} \\
0 & \text{for } |f| \geq \frac{1+r}{2T}
\end{cases} \tag{30}

Where T is symbol period and the symbol rate is $f = 1/T$. Where r
is the roll-off parameter $0 \leq r \leq 1$, however, the impulse response
of the SRRC filter in the continuous time domain is expressed as
\begin{align*}
g(t) &= \sin \left((1-r) \frac{\pi t}{T} \right) + 4r t \cos \left((1+r) \frac{\pi t}{T} \right) \\
&= \frac{\sin \left((1-r) \frac{\pi t}{T} \right)}{\sin \left(\frac{\pi t}{T} \right)} \\
&\quad \times \cos \left((1+r) \frac{\pi t}{T} \right) \tag{31}
\end{align*}

Fig. 2: The Impulse Responses of SRRC Filter with Various Roll-Off
Factors.

Fig. 2 gives the SRRC representation with roll-off factor equal $r = 1$
and $r = 0.5$ in frequency response; we observe that the SRRC
prototype presents a significant improvement compared to the
rectangular window prototype in terms of frequency selectivity

3. The Peak to Average Power Ratio (PAPR)

The Peak to Average Power Ratio (PAPR) of FBMC/OQAM signal $x[n]$ is
described as the ratio of the peak power of $x[n]$ to its average power. The PAPR
of FBMC/OQAM transmitted signal can be written as [21][23-24]

$$\text{PAPR} = 10 \log_{10} \max \left[\frac{\| x[n] \|}{E[| x[n] |^2]} \right] \text{dB} \tag{32}$$

Where $E[\cdot]$ expresses the expectation operation. Additionally, for
the FBMC/OQAM signals, the complementary cumulative distribu-
tion function (CCDF) of PAPR giving the probability P that the
PAPR is above several threshold levels (γ) can be expressed by
[22]:

$$CCDF(\gamma) = P(\{ \text{PAPR}(x[n]) > \gamma \}) = 1 - (1 - e^{-\gamma}) \tag{33}$$

4. Precoding techniques

Before the FBMC modulation, each of data FBMC block is multi-
plied by a Precoding matrix to the input symbols which is known
as data-independent process of Precoding. The Precoding tech-
nique is used to reduce the autocorrelation of the input sequence
to reduce the peak to average power (PAPR) of FBMC signal and the
results make the envelope almost constant. It also works with a
random number of subcarriers and it can improve the BER perfor-
mance of FBMC signals.

However, there are some important conditions for using Precoding
matrix to reduce PAPR:

I. the Precoding matrix must be an orthogonal matrix P by satis-
ifying the condition

$$PP^* = I \tag{34}$$

Where P^* means Hermitian transpose of the matrix P, and I
means the identity matrix

II. all singular values of Precoding matrix P must be equal to
one to obtain minimum BER

4.1. Types of Precoding matrix

We assessed four types of Precoding transforms which are applied
to the system separably to measure the performance of each tech-
nique combined with Mu companding.

4.1.1. Discrete cosine transforms (DCT)

Mathematically, the unitary Discrete Cosine Transform (DCT) of
an input sequence a_n with length N is given by the following formula

$$y_k = \frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} a_n \cos \left[\frac{\pi (2n+1) k}{2N} \right] \quad k = 1, 2, \ldots, N-1 \tag{35}$$

Where the analysis window T_k can be expressed as:

$$T_k = \begin{cases}
1 & , k = 1 \\
\frac{1}{\sqrt{N}}, & 2 \leq k \leq N
\end{cases} \tag{36}$$

Where a_n is the input to the Precoding transform, y_k is the output
of Precoding transform

4.1.2. The Walsh Hadamard Transforms

The Walsh Hadamard Transform (WHT) is a non-sinusoidal and
can be implemented by a butterfly structure as in FFT. This means
that applying WHT does not require the extensive increase in sys-
tem complexity. WHT decomposes a signal into a set of basic functions.
These functions are Walsh functions, which are square
waves with values of +1 or -1 [17]. The proposed Hadamard trans-
form scheme may reduce the occurrence of the high peaks com-
paring the original FBMC system. The kernel of WHT can be
written as follows:

$$H_n = [1] \tag{35}$$
\[H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \]
\[H_{ro} = \frac{1}{\sqrt{2N}} \begin{bmatrix} H_1 & H_n \\ H_1 & -H_n \end{bmatrix} \]

(36)

(37)

The output sequence of WHT can be written as:

\[y_i = \frac{1}{N} \sum_{n=0}^{N-1} a_n \text{WAL}(n,k) \]

(38)

Where \(k = 0,1, \ldots, N-1 \) \(\text{WAL}(n,i) \) are Walsh functions, \(a_n \) is the input to the Precoding transform, \(y_i \) is the output of Precoding transform

4.1.3. The Discrete Sine Transforms

The output sequence of a DST Precoding with length \(N \) can be written as

\[y_x = \frac{1}{N} \sum_{n=0}^{N-1} a_n \sin \left(\frac{\pi n}{N+1} \right) \quad k = 1,2, \ldots, N-1 \]

(39)

Where \(a_n \) is the input to the Precoding transform, \(y_x \) is the output of Precoding transform

4.1.4. The discrete Hartley transform

The output sequence of a DHT with length \(N \) can be written as

\[y_x = \frac{1}{N} \sum_{n=0}^{N-1} a_n \left(\cos \frac{2\pi nk}{N} + i \sin \frac{2\pi nk}{N} \right) \quad k = 1,2, \ldots, N-1 \]

(40)

For, where \(a_n \) is the input to the Precoding transform, \(y_x \) is the output of Precoding transform

5. Non-linear companding technique

It is one of the most attractive schemes due to its good system performance, BER, low implementation complexity and absence of bandwidth expansion. This transform technique performs compression at the transmitter end after synthesis filter bank and expansion at the receiver end before the signal is fed to analysis filter. Therefore, the compounded signal at the transmitter can be correctly recovered at the receiver using an inverse transform function. Companding increases the SNR when the input signal is low and therefore it reduces the effect of systems noise source

5.1. Mu law companding technique

Figure 3 shows the Mu-law compressor characteristics with different values of Mu ratio which is used to control the amount of companding in the FBMC signal. From the figure we can observe that when the MU ratio increases it results in more compression for the higher input values, while if Mu=1, no compression occurs.

![Mu-Law Compressor Characteristics](image)

Fig. 3: Mu-Law Compressor Characteristics.

The companding function applied to the end of the transmitter side is expressed by [21-22]

\[s(n) = C(s[n]) = \text{sgn}(s[n]) \cdot \frac{\ln(1+\text{Mu}s[n])}{\ln(1+\text{Mu})}, \]

(41)

Where Mu parameter used to control the companding level applied to the signal. The inverse companding at the receiver is given by

\[r(n) = F^{-1}(y[n]) = \text{sgn}(y[n]) \cdot \frac{1}{\text{Mu}} \cdot (1+\text{Mu})^{1/\text{Mu}^z-1}, \]

(42)

Where \(r \) is receives signal, Mu is the ratio of companding, and sgn is assign of signal.

6. Simulation result

Extensive simulations are conducted to assess the performance of the proposed scheme. We designed the FBMC/OQAM with 256 subcarriers and oversampling factor \(L=4 \). In our design, the prototype filter is the square root raised cosine filter SRRC with roll factor of 0.5 and length of 4T. For the PAPR of FBMC hybrid schemes are implemented with different Precoding techniques and Mu Law companding scheme.

<table>
<thead>
<tr>
<th>Table 1: Simulation Parameters of the Proposed System</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
</tr>
<tr>
<td>Total number of subcarriers</td>
</tr>
<tr>
<td>Data blocks</td>
</tr>
<tr>
<td>Modulation</td>
</tr>
<tr>
<td>Overlapping factor</td>
</tr>
<tr>
<td>Roll factor</td>
</tr>
<tr>
<td>SNR range</td>
</tr>
<tr>
<td>Mu-ratio</td>
</tr>
</tbody>
</table>
The simulation results were obtained by considering an Additive White Gaussian Noise (AWGN) channel. Fig 4 shows the flow chart of processes for FBMC/OQAM with Precoding and Companding. The simulation parameters for FBMC/OQAM system which is used to analyze the PAPR and BER performance of the proposed hybrid scheme is presented in Table I.

6.1. Performance in PAPR reduction

In FBMC/OQAM systems, the complementary cumulative distribution function (CCDF) is used to evaluate PAPR reduction performance, which denotes the probability that the PAPR exceeds a certain threshold. For a given threshold, a lower CCDF indicates better PAPR performance. We have applied 2000 random FBMC blocks to obtain the CCDFs of different signals.

Fig. 5 Illustrates the CCDFs of conventional FBMC/OQAM signal, Mu Law companding signal, the Discrete Hartley Transform (DHT) Precoding signal, and Hybrid scheme consisting of the Discrete Hartley Transform (DHT) Precoding with Mu Law companding technique for reducing the PAPR in FBMC/OQAM system with companding factor Mu =255.

Table III depicts the PAPR at CCDF= 10^-3 for the above-mentioned schemes in the figure. Clearly, from figure 6 and table III, we observe that, when we use the DHT Precoding with Mu-companding, The PAPR appreciably improves. At clip rate of 10^-3, the PAPR is reduced to 3.45dB which is really an enormous improvement.

Fig. 4: Flow Chart of Proposed Hybrid Scheme.

Fig. 5: FBMC/OQAM systems with Using Precoding Transform Technique.
Fig. 7: FBMC/OQAM system with Hybrid Scheme Consist from Discrete Cosine Transform and Mu Law Companding.

Fig.7 Illustrates the CCDFs of conventional FBMC/OQAM signal, Mu Law companding signal, the discrete cosine transform (DCT) Precoding signal and Hybrid scheme consisting of the discrete cosine transform Precoding with Mu Law companding technique for reducing the PAPR in FBMC/OQAM system. Table IV depicts the PAPR at CCDF= 10^{-3} for the different schemes in Fig. 7. Clearly, from figure 7 and table IV, we observe that, when we use the DCT Precoding with Mu-companding, the PAPR is improving. At clip rate of 10^{-3}, the PAPR is reduced to the 3.536 dB which is a considerable achievement.

Table IV: PAPR Reduction for FBMC/OQAM with Using Discrete Cosine Transform and Mu Law Companding

<table>
<thead>
<tr>
<th>Scheme</th>
<th>PAPR dB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional FBMC</td>
<td>18.00</td>
</tr>
<tr>
<td>FBMC with Mu Companding only</td>
<td>7.790</td>
</tr>
<tr>
<td>FBMC with DCT Precoding only</td>
<td>11.23</td>
</tr>
<tr>
<td>FBMC with DCT Precoding and Mu Comp.</td>
<td>2.888</td>
</tr>
</tbody>
</table>

Fig. 8: FBMC/OQAM System with Hybrid Scheme Consist from Discrete Sine Transform and Companding.

Fig.8 Illustrates the CCDFs of conventional FBMC/OQAM signal, Mu Law companding signal, the discrete sine transform (DST) Precoding signal, and Hybrid scheme consisting of the discrete sine transform (DST) Precoding with Mu Law companding technique for reducing the PAPR in FBMC/OQAM system. Table V depicts the PAPR at CCDF= 10^{-3} for the same schemes in Fig. 8. Clearly, from figure 8 and table V, we observe that when we use the WHT Precoding with Mu-companding, the PAPR further improves. At clip rate of 10^{-3}, the PAPR is reduced to the 2.888 dB when is even better than the previous techniques.

Table V: PAPR Reduction for FBMC/OQAM with Using Discrete Sine Transform and Mu Law Companding

<table>
<thead>
<tr>
<th>Scheme</th>
<th>PAPR dB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional FBMC</td>
<td>18.00</td>
</tr>
<tr>
<td>FBMC with Mu Companding only</td>
<td>7.866</td>
</tr>
<tr>
<td>FBMC with WHT only</td>
<td>13.49</td>
</tr>
<tr>
<td>FBMC with WHT Precoding and Mu Comp.</td>
<td>3.807</td>
</tr>
</tbody>
</table>

Fig. 9: FBMC/OQAM with Hybrid Scheme Consist from Walsh Hadamard Transform and Companding.

Fig.9 Illustrates the CCDFs of conventional FBMC/OQAM signal, Mu Law companding signal, the Walsh Hadamard Transform (WHT) Precoding signal and Hybrid scheme consisting of the Walsh Hadamard Transform (WHT) Precoding with Mu Law companding technique to reduce the PAPR in FBMC/OQAM system. Table VI depicts the PAPR at CCDF= 10^{-3} for the different schemes. Clearly, from figure 9 and table VI, we observe that when we use the WHT Precoding with Mu-companding, The PAPR improves. At clip rate of 10^{-3}, the PAPR is reduced to 3.807 dB which is worse than the DST plus the u law compression. Fig.10 Illustrates the CCDFs of conventional FBMC/OQAM signal, and different hybrid schemes investigated to reduce PAPR. Table VII depicts the PAPR at CCDF= 10^{-3} for the different schemes. Clearly, from figure 10 and table VII, we can observe that a hybrid scheme consisting of the Precoding with Mu-companding for reducing PAPR in the FBMC system can be used to reduce the PAPR with the best result of PAPR reduction can be achieved when we use a combination of the DST with Mu Law companding.

Table VI: PAPR Reduction for FBMC/OQAM with Using Walsh Hadamard Transform and Mu Law Companding

<table>
<thead>
<tr>
<th>Scheme</th>
<th>PAPR dB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional FBMC</td>
<td>18.00</td>
</tr>
<tr>
<td>FBMC with Mu Companding only</td>
<td>7.866</td>
</tr>
<tr>
<td>FBMC with WHT only</td>
<td>13.49</td>
</tr>
<tr>
<td>FBMC with WHT Precoding and Mu Comp.</td>
<td>3.807</td>
</tr>
</tbody>
</table>

Fig. 10: FBMC/OQAM signal With Hybrid Scheme Consist from Different Precoding and Mu Law Companding.
Fig. 11 shows the value of PAPR reduction in dB, which proves that for FBMC systems, different Precoding transform combined with Mu law companding can be used for effective PAPR reduction. We can observe that the combination of DHT with Mu law Comping can reduce the PAPR by approximately 14.55dB, the combination of DCT with Mu -Law Companing can reduce the PAPR by approximately 14.464dB, the combination of WHT with Mu law Comping can reduce the PAPR by approximately 14.193 dB and finally, the combination of DST with Mu law Comping can reduce the PAPR by approximately 15.112 dB.

6.2. BER performance

Fig. 12 illustrates the BER of the proposed system as function of signal to noise ratio for various schemes over an AWGN channel. We can observe that fortunately that the hybrid scheme based on the combination of DST and Mu-Law companding has better performance than other types of hybrid schemes.

7. Conclusion

In this paper, we analyzed the performance of FBMC/OQAM system in terms of PAPR reduction by using some preceding techniques combined with Mu -Law commanding. From our simulation, it is found that the hybrid techniques produced the lower PAPR compared to conventional FBMC/OQAM or when using preceding or Mu law commanding technique separately. Furthermore, hybrid scheme consisting from the DST preceding and Mu Law commanding produced better results than other hybrid schemes. By using preceding technique, there will be no signal degradation and no need for any side information to send to the receiver side. Moreover, the BER performance of FBMC/OQAM slightly degrades with using the hybrid scheme of any sort of precoding and Mu-Law companding. The implementation complexity of the proposed technique is acceptable since it does not require any optimization from one FBMC block to the next.

8. Further research

We intend to include the other types of Precoding like zadoffChu sequence and wavelet transform with other companding techniques as well as using Precoding transform with SLM technique.

References

