
 

 

 

 

International Journal of Engineering & Technology, 4 (2) (2015) 408-413 

www.sciencepubco.com/index.php/IJET 

©Science Publishing Corporation 
doi: 10.14419/ijet.v4i2.4221 

Research Paper 

 

 

 

 

Design of modified ripper algorithm to predict customer churn 
 

M. Rajeswari *, T. Devi 

 
School of Computer Science and Engineering, Bharathiar University, Coimbatore, India 

*Corresponding author E-mail: mraji2231@gmail.com 

 

 
Copyright © 2015 M. Rajeswari, T. Devi. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted 

use, distribution, and reproduction in any medium, provided the original work is properly cited. 

 

Abstract 
 

Technologies such as data warehousing, data mining, and campaign management software have made Customer 

Relationship Management (CRM) a new area where firms can gain a competitive advantage. It is becoming common 

knowledge in business that retaining existing customers is an important strategy to survive in industry. Once identified, 

these customers can be targeted with proactive retention campaigns in a bid to retain them. These proactive marketing 

campaigns usually involve the offering of incentives to attract the customer into carrying on their service with the 

supplier. These incentives can be costly, so offering them to customers who have no intention to defect results in lost 

revenue. Also many predictive techniques do not provide significant time to make customer contact. This time 

restriction does not allow sufficient time for capturing those customers who are intending to leave. This research aims to 

develop methodologies for predicting customer churn in advance, while keeping misclassification rates to a minimum. 

 
Keywords: Churn; Class Imbalance; Customer Relationship Management; Data Mining. 
 

1. Introduction 

This chapter discusses on various algorithms towards customer churn prediction. The Banks usually make a distinction 

between voluntary churn and involuntary churn. Voluntary churn occurs due to a decision by the customer to switch to 

another bank, involuntary churn occurs due to circumstances such as a customer's relocation to a long-term care facility, 

death, or the relocation to a distant location. In most applications, involuntary reasons for churn are excluded from the 

analytical models. Analysts tend to concentrate on voluntary churn, because it typically occurs through bank-customer 

relationship which is controlled by bank, such as transaction interactions, services offered etc. The existing algorithms 

such as Decision Tree, Weighted Random Forest and Gradient Boosting Algorithm are depicted in this chapter. The 

proposed mechanism for customer churn prediction makes use of Genetic Algorithm, k-Nearest Neighbor and Ripper. A 

new algorithm has been proposed namely Modified Ripper Algorithm. The next section depicts the framework of the 

research design.  

2. Framework 

The proposed research work aims in design and development of customer churn prediction in banking sector. The 

framework is developed to extract and classify the churners among the customers through class imbalance. The 

proposed work uses mechanisms namely Decision Tree (DT), Gradient Boosting (GB), Weighted Random Forest 

(WRF), Genetic Algorithm (GA), k-Nearest Neighbor (k-NN) and Ripper Algorithm (RA). It also demonstrates three 

sampling methods namely Random over Sampling, Random under Sampling and Advanced Random under Sampling 

with experimental results and discussions. A new algorithm has been proposed as Modified Ripper Algorithm (MRA). 

Evaluation techniques such as Area under Curve (AUC), Error and Accuracy are used. By using these entire techniques 

class imbalance is predicted. All these concepts are clearly defined in the following Fig.1. 

http://creativecommons.org/licenses/by/3.0/


International Journal of Engineering & Technology 409 

 

 

 

 

 
Fig. 1: Framework. 

3. Evaluation metrics 

The six categories of problems are associated while mining imbalanced classes. These classes are mapped with their 

relevant problems. Depending upon the problem the necessary results are chosen using the algorithms. Such cases are 

used ti handle relevant real time problems in various places which are shown below (Table.1). 

4. Classification algorithms 

4.1. Decision tree 
 

A decision tree is a classifier expressed as a recursive partition of the instance space. The decision tree consists of nodes 

that form a rooted tree, meaning it is a directed tree with a node called “root” that has no incoming edges. All other 

nodes have exactly one incoming edge. A node with outgoing edges is called an internal or test node. All other nodes 

are called leaves (also known as terminal or decision nodes). In a decision tree, each internal node splits the instance 

space into two or more sub-spaces according to a certain discrete function of the input attributes values. In the simplest 

and most frequent case, each test considers a single attribute, such that the instance space is partitioned according to the 

attribute’s value. In the case of numeric attributes, the condition refers to a range. Each leaf is assigned to one class 

representing the most appropriate target value. Alternatively, the leaf may hold a probability vector indicating the 

probability of the target attribute having a certain value. Instances are classified by navigating them from the root of the 

tree down to a leaf, according to the outcome of the tests along the path. Fig 2 describes a decision tree that reasons 

whether or not a potential customer will respond to a direct mailing. Given this classifier, the analyst can predict the 

response of a potential customer (by sorting it down the tree), and understand the behavioral characteristics of the entire 

potential customers population regarding direct mailing [8]. 

 

DECISION TREE 

GRADIENT BOOSTING 

WEIGHTED RANDOM FOREST 

GENETIC 

K- NEAREST NEIGHBOR 

RIPPER 

MODIFIED-RIPPER 

PERFORMANCE METRICS 

(AREA UNDER CURVE, ERROR, ACCURACY) 

COMPARISON OF ALGORITHMS 

TO FIND CLASS IMBALANCE 

Banking Dataset 



410 International Journal of Engineering & Technology 

 

 
 

Table 1: Data Mining Problems Mapped to its Solutions to Address these Problems [8] 

Data Mining ProblemData 

Mining 
Methods Mapped to Address the problem Method Mapped to Address the problem 

Improper Evaluation 

Metrics 

More appropriate evaluation Metrics 

Cost-sensitive learning 

Absolute Rarity Learn only the rare class 

Sampling (over- and under) 

Cost-sensitive learning 

More appropriate evaluation metrics 

More appropriate inductive bias 

Boosting 

Relative Rarity 

Data fragmentation 

Non-greedy search techniques 

Learn only the rare class 

Sampling (over- and under) 

Inappropriate bias 

More appropriate inductive bias 

Appropriate evaluation metrics 

Cost-sensitive learning 

Noise 
Advanced sampling 

More appropriate inductive bias 

 

4.2. Weighted random forest 
 

Weighted Random Forests are an ensemble learning method for classification (and regression) that operate by 

constructing a multitude of decision trees at training time and outputting the class that is the mode of the classes output 

by individual trees. The algorithm for inducing a random forest was developed  and "Random Forests" is their 

trademark [1]. The term came from random decision forests that were first proposed  [3]. The method combines 

Breiman's "bagging" idea and the random selection of features, introduced independently by them in order to construct 

a collection of decision trees with controlled variance. The selection of a random subset of features is an example of the 

random subspace method, which, in Ho's formulation, is a way to implement classification proposed [5]. The early 

development of random forests introduced the idea of searching over a random subset of the available decisions when 

splitting a node, in the context of growing a single tree as explained in fig 4. The idea of random subspace selection 

from influential in the design of random forests [3]. In this method a forest of trees is grown, and variation among the 

trees is introduced by projecting the training data into a randomly chosen subspace before fitting each tree. Finally, the 

idea of randomized node optimization is explained where the decision at each node is selected by a randomized 

procedure, rather than a deterministic optimization. 

 

4.3. Gradient boosting 
 

Gradient Boosting is a machine learning technique for regression problems, which produces a prediction model in the 

form of an ensemble of weak prediction models, typically Decision Trees. It builds the model in a stage-wise fashion 

like other boosting methods do, and it generalizes them by allowing optimization of an arbitrary differentiable loss 

function. The Gradient Boosting method can also be used for classification problems by reducing them to regression 

with a suitable loss function. The method was invented and published in a series of two papers, the first of which 

introduced the method, and the second one described an important tweak to the algorithm, which improves its accuracy 

and performance. Gradient Boosted Trees (GBT) is a generalized boosting algorithm introduced by Jerome Friedman. 

In contrast to the AdaBoost.M1 algorithm, GBT can deal with both multiclass classification and regression problems. 

Moreover, it can use any differential loss function, some popular ones are implemented. Decision trees usage as base 

learners allows processing ordered and categorical variables. Gradient Boosted Trees model represents an ensemble of 

single regression trees built in a greedy fashion. Training procedure is an iterative process similar to the numerical 

optimization via the gradient descent method. Summary loss on the training set depends only on the current model 

predictions for the training samples. At every training step, a single regression tree is built to predict antigradient vector 

components. Step length is computed corresponding to the loss function and separately for every region determined by 

the tree leaf. It can be eliminated by changing values of the leaves directly [4].  

 

4.4. Genetic algorithm 
 

A Genetic Algorithm is a probabilistic search technique that computationally simulates the process of biological 

evolution. It mimics evolution in nature by repeatedly altering a population of candidate solutions until an optimal 

solution is found. The GA evolutionary cycle starts with a randomly selected initial population. The changes to the 

population occur through the processes of selection based on fitness, and alteration using crossover and mutation. The 



International Journal of Engineering & Technology 411 

 

 

 

 

application of selection and alteration leads to a population with a higher proportion of better solutions [6]. The 

evolutionary cycle continues until an acceptable solution is found in the current generation of population, or some 

control parameter such as the number of generations is exceeded. The smallest unit of a genetic algorithm is called a 

gene, which represents a unit of information in the problem domain. A series of genes, known as a chromosome, 

represents one possible solution to the problem. Each gene in the chromosome represents one component of the solution 

pattern. The most common form of representing a solution as a chromosome is a string of binary digits. Each bit in this 

string is a gene. The process of converting the solution from its original form into the bit string is known as coding. The 

specific coding scheme used is application dependent. The solution bit strings are decoded to enable their evaluation 

using a fitness measure [7].  

 

4.5. K- nearest neighbor algorithm 
 

This method for classifying data based on closest training examples in the feature space. k-NN is a type of instance-

based learning, or lazy learning where the function is only approximated locally and all computation is deferred until 

classification. It can also be used for regression. The k-NN is amongst the simplest of all machine learning algorithms. 

An object is classified by a majority vote of its neighbors, with the object being assigned the class most common 

amongst its k nearest neighbors. k is a positive integer, typically small. If k = 1, then the object is simply assigned the 

class of its nearest neighbor. In binary (two class) classification problems, it is helpful to choose k to be an odd number 

as this avoids difficulties with tied votes [9]. The same method can be used for regression, by simply assigning the 

property value for the object to be the average of the values of its k-Nearest Neighbors. It can be useful to weight the 

contributions of the neighbors, so that the nearer neighbors contribute more to the average than the more distant ones. 

The neighbors are taken from a set of objects for which the correct classification is known. This can be thought of as the 

training set for the algorithm, though no explicit training step is required. In order to identify neighbors, the objects are 

represented by position vectors in a multidimensional feature space. It is usual to use the Euclidean distance, though 

other distance measures, such as the Manhattan distance could in principle be used instead. The k-Nearest Neighbor 

algorithm is sensitive to the local structure of the data. The test sample (green circle) should be classified either to the 

first class of blue squares or to the second class of red triangles. If k = 3 it is classified to the second class because there 

are 2 triangles and only 1 square inside the inner circle. If k = 5 it is classified to first class (3 squares vs. 2 triangles 

inside the outer circle).The training examples are vectors in a multidimensional feature space. The space is partitioned 

into regions by locations and labels of the training samples. A point in the space is assigned to the class c if it is the 

most frequent class label among the k nearest training samples. Usually Euclidean distance is used. The training phase 

of the algorithm consists only of storing the feature vectors and class labels of the training samples.In the actual 

classification phase, the test sample (whose class is not known) is represented as a vector in the feature space [2].  

 

4.6. Ripper algorithm 
 

The Repeated Incremental Pruning to Produce Error The Repeated Incremental Pruning to Produce Error Reduction 

(Ripper) is a classification algorithm designed to generate rules set directly from the training dataset. The name is drawn 

from the fact that the rules are learned incrementally. A new rule associated with a class value will cover various 

attributes of that class .The algorithm was designed to be fast and effective when dealing with large and noisy datasets 

compared to decision trees. During the growing phase of the algorithm, a greedy approach of learning is applied, i.e. 

each rule is learned one at a time. In datasets with very large dimensions, this causes over-fitting of the data. This in 

turn increases the classification error rate significantly if the algorithm is tested with data with missing values. The 

Ripper model is not as popular as the decision trees in the insurance domain, but it has been applied in financial risk 

analysis. It has been used in financial institutes to help find the best policy for credit products, increase revenue as well 

as decreasing losses.Building Stage repeats 2 and 3 until the Description Length (DL) of the ruleset and examples is 64 

bits greater than the smallest DL met so far, or there are no positive examples, or the error rate is greater equal than 50 

percent. Grow Phase grows one rule by greedily adding antecedents (or conditions) to the rule until the rule is perfect 

(i.e. 100 percent accurate). The procedure checks every possible value of each attribute and selects the condition with 

high information gain. Prune Phase incrementally prune each rule and allow the pruning of any final sequences of the 

antecedents. Optimization Stage after generating the initial ruleset, generate and prune two variants of each rule from 

randomized data using procedure 2 and 3. But one variant is generated from an empty rule while the other one is 

generated by greedily adding antecedents to the original rule. Moreover, the pruning metric used is. Then the smallest 

possible DL for each variant and the original rule is computed. The variant with the minimal DL is selected as the final 

representative of in the ruleset. After all the rules in have been examined and if there are still residual positives, more 

rules are generated based on the residual positives using Building Stage again. Delete the rules from the ruleset that 

would increase the DL of the entire ruleset and add resultant ruleset [10]. 

 

 

 

http://en.wikipedia.org/wiki/Statistical_classification
http://en.wikipedia.org/wiki/Feature_space
http://en.wikipedia.org/w/index.php?title=Instance-based_learning&action=edit
http://en.wikipedia.org/w/index.php?title=Instance-based_learning&action=edit
http://en.wikipedia.org/wiki/Lazy_learning
http://en.wikipedia.org/wiki/Regression
http://en.wikipedia.org/wiki/Machine_learning
http://en.wikipedia.org/wiki/Integer
http://en.wikipedia.org/wiki/Regression
http://en.wikipedia.org/wiki/Euclidean_distance
http://en.wikipedia.org/wiki/Manhattan_distance
http://en.wikipedia.org/wiki/Euclidean_distance


412 International Journal of Engineering & Technology 

 

 

4.7. Modified ripper algorithm 
 

RIPPER was introduced as a successor of the Incremental Reduced Error Pruning (IREP) algorithm for rule induction. 

Even though the key principles remain the same, MRIPPER improves IREP in many details and is also able to cope 

with multiclass problems. A single MRIPPER rule consists of an antecedent part and a consequent part. The antecedent 

part is a conjunction of predicates (selectors) and the consequent part is a class assignment. MRIPPER learns such rules 

in a greedy manner, following a separate-and-conquer strategy. Prior to the learning process, the training data are sorted 

by class labels in ascending order according to the corresponding class frequencies.Rules are then learned for the first m 

− 1 classes, starting with the smallest one. Once a rule has been created, the instances covered by that rule is removed 

from the training data, and this is repeated until no instances from the target classes are left. The algorithm then 

proceeds with the next class. Finally MRIPPER finds no more rules to learn, a default rule (with empty antecedent) is 

added for the last (and hence, most frequent) class. Rules for single classes are learned until either all positive instances 

are covered or the last rule has been added was “too complicated.” The latter property is implemented in terms of the 

total description length: the stopping condition is fulfilled if the description length of r is at least d bits longer than the 

shortest description length encountered so far are shown in Fig.12. 

5. Sampling methods used 

Oversampling and undersampling in data analysis are techniques used to adjust the class distribution of a data set (i.e. 

the ratio between the different classes/categories represented). Oversampling and undersampling are opposite and 

roughly equivalent techniques. They both involve using a bias to select more samples from one class than from another. 

The usual reason for oversampling is to correct for a bias in the original dataset. One scenario where it is useful is when 

training a classifier using labeled training data from a biased source, since labeled training data is valuable but often 

comes from un-representative sources. A number of resampling methods have been proposed and studied in the past [9]. 

Resampling methods can be divided into two categories: oversampling methods and undersampling methods. 

Oversampling methods balance training class priors by increasing the number of minority class data points, while 

undersampling methods balance training class priors by decreasing the number of majority class data points. Some 

widely used approaches are random oversampling, random undersampling, and cost-proportionate rejection sampling. 

Random oversampling increases the number of minority class data points in the training set by randomly replicating 

existing minority class members. While simplistic, random oversampling has performed well in empirical studies even 

when compared to other, more complicated oversampling methods. Unfortunately, since random oversampling only 

replicates existing data points, it has been argued that random oversampling does not add any actual data to the training 

set. Instead of replicating existing data points, “synthetic” minority class members are added to the training set by 

creating new data points. Empirically, SMOTE has shown to perform well against random oversampling [8]. 

6. Conclusion 

Customer churn is one among the major research topics in customer relationship management. Several approaches were 

proposed for customer churn prediction. This chapter discussed the various techniques for predicting customer churn, 

comparison with other techniques that deals with the concerned research problem. The next chapter deals with the 

development of prototype. 

Acknowledgements 

The authors extended their sincere thanks to Department of Computer Applications for giving permission to do the 

research and all others directly or indirectly helped in pursuing this research. 



International Journal of Engineering & Technology 413 

 

 

 

 

 
Fig. 12: Modified Ripper Algorithm 

References 

[1] Breiman L., Friedman J., Olshen R., and Stone C. Classification and Regression Trees. Wadsworth Int. Group, 1984. 

[2] Hancock T. R., Jiang T., Li M., Tromp J., Lower Bounds on Learning Decision Lists and Trees. Information and Computation 126(2): 114-

122, 1996. http://dx.doi.org/10.1006/inco.1996.0040. 
[3] Ho, Tin Kam (1995). Random Decision Forest. Proceedings of the 3rd International Conference on Document Analysis and Recognition, 

Montreal, QC, 14–16 August 1995. pp. 278–282. 

[4] Hyafil L. and Rivest R.L., Constructing optimal binary decision trees is NPcomplete. Information Processing Letters, 5(1):15-17, 1976. 
http://dx.doi.org/10.1016/0020-0190(76)90095-8. 

[5] Kleinberg, Eugene (1996). An Overtraining-Resistant Stochastic Modeling Method for Pattern Recognition. Annals of Statistics 24 (6): 2319–

2349. http://dx.doi.org/10.1214/aos/1032181157. 
[6] Naumov G.E., NP-completeness of problems of construction of optimal decision trees. Soviet Physics: Doklady, 36(4):270-271, 1991. 

[7] Quinlan, J.R., Simplifying decision trees, International Journal of ManMachine Studies, 27, 221-234, 1987. http://dx.doi.org/10.1016/S0020-

7373(87)80053-6. 
[8] Weiss.G.M, Provost.F, The effect of class distribution on classifier learning: An empirical study, Dept. Comput. Sci., Rutgers Univ., Newark, 

NJ, Tech. Rep. TR-43, 2001. 

[9] Weiss.G.M, Provost.F, Learning when training data are costly: The effect of class distribution on tree induction, J. Artif. Intell. Res., vol. 19, 
pp. 315–354, 2003. 

[10] Zantema, H., and Bodlaender H. L., Finding Small Equivalent Decision Trees is Hard, International Journal of Foundations of Computer 

Science, 11(2):343-354, 2000. http://dx.doi.org/10.1142/S0129054100000193. 

procedure BUILDSET(P,N)  

P = positive examples  

N = negative examples  

RuleSet = {}  
DL = Deseriptiontength(RuleSet, P, N)  

while P   {} 

// Grow and prune a new rule  
split (P, N) into (Grow Pas, Grow Neg) and (PrunePos, Prune Neg)  

Rule := GrowRule(Grow Pos, Grow Neg)  

Rule := PruneRule(Rule, Prune Pos, Prune Neg)  
add Rule to RuleSet  

if DescriptionLength(RuteSet, P, N) > DL + 69 then 

// Prune the whole rule set and exit  
for each rule R in RuleSet (considered in reverse order)  

if DescriptionLength(RuleSet {R}, P, N) < DL then 

delete R from RuleSet  
DL := DescriptionLength(RuleSet, P, N)  

end if  

end for 
return (RuleSet)  

end if  

DL := DescriptionLength(RuleSet, P, N)  
delete from P and N all examples covered by Rule  

end while  

end BUILDRULESET  
procedure OPTIM IZERULESET(RuleSet, P, N)  

for each rule R in RuleSet  

delete R from RuleSet  
U Pos := examples in P not covered by RuleSet  

U Neg := examples in N not covered by RuleSet  

split (U Pos,U Neg) into (Grow Pos, Grow Neg) and (Prune Pos,PruneNeg) 
Rep Rule := GrowRule(GrowPos,GrowNeg)  

Rep Rule := PruneRule(Rep Rule, Prune Pos, Prune Neg)  

Rev Rule := GrowRule(GrowPos,GrowNeg,R) 
Rev Rule := PruneRule(Rev Rule, PrunePos,PruneNeg)  

choose better of Rep Rule and Rev Rule and add to RuleSet  

end for  
end OPTIMIZERCIESET  

procedure RIP PER( P, N, k)  
RuleSet := BUILDRULESET(P, N)  

repeat k times RuleSet :=  

OPTIMIZERULESET(RuleS et, P, N)  
return (RuleSet)  

end RIPPER 

http://dx.doi.org/10.1006/inco.1996.0040
http://dx.doi.org/10.1016/0020-0190(76)90095-8
http://dx.doi.org/10.1214/aos/1032181157
http://dx.doi.org/10.1016/S0020-7373(87)80053-6
http://dx.doi.org/10.1016/S0020-7373(87)80053-6
http://dx.doi.org/10.1142/S0129054100000193

