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Abstract 

Numerical simulation of fluid flow phenomena, including 
complicated free surface deformation, has been a main research 
interest for many authors. In this context, using mesh based methods 
has been a common choice in the past decades. However, in the recent 
years, Smoothed Particle Hydrodynamics (SPH) as a Lagrangian 
meshless method has been utilized in many of applications. In the 
present article, a two dimensional solitary wave on a beach is 
generated and the effect of various wave heights to water depth ratios 
on solitary wave generation are studied. Furthermore, condition in 
which wave breaking occurs is also considered. Finally, the results of 
SPH simulations are compared against the available results in the 
literature and it is shown that Solitary wave profile simulated by SPH 
is in good agreement with experimental data. 

Keywords: Smoothed Particle Hydrodynamics, Solitary Waves, Wave 
Breaking, Symplectic Algorithm, Cubic Spline Kernel Function 

 

1 Introduction 

Interaction of solitary wave and marine structures and run up of solitary wave on 

slope beaches have always been a fundamental problem in ocean engineering. 

Furthermore, study of solitary wave interaction with the slope beaches has been 

the center of attention, over the years. In the beach zones where the water depth is 

shallow, solitary wave is strongly influenced by the bed slope [1]. Since 

experimental modeling of solitary waves is very expensive, the numerical 

modeling is wave can be a good alternative. 
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So far, various numerical methods for simulation of free surface flow have been 

implemented. Grilli and Seveden [2] used high order boundary element method 

(BEM) to simulate nonlinear water waves. Grilli [3] also developed a numerical 

model for nonlinear wave propagation in the physical space. He used a higher 

order BEM for solving Laplace’s equation with higher order Taylor expansion for 

time integration of the two nonlinear free surface boundary conditions. Finally, he 

could simulate solitary wave with a reasonable accuracy. Furthermore, Grilli et al. 

[4] studied the characteristic of solitary wave such as wave length, wave velocity, 

wave height to water depth ratio (H/d), and breaking of the solitary wave. There 

also exist some studies which have focused on the interaction of solitary wave on 

slope beaches with inclined and vertical wall. 

A numerical method was developed by Fenton and Rienecher [5] for solution of 

the fully nonlinear equations governing the irrotational flow with free surface and 

variable bed topography. This method was applied to analyze the unsteady motion 

of non-breaking water waves of arbitrary magnitude over a horizontal bed. All 

horizontal variation was approximated by truncated Fourier series. For non-

breaking waves the method was capable of performing high accuracy 

computations. Sen [6] used cubic spline variable and by assuming variable 

boundaries, extended high order integral equation method. For a large number of 

problems where the solution is sought in time domain, the (BIEM) solver, used as 

the field equation solver, must be applied at every time instant. For such a time 

domain simulation algorithm, the accuracy of (BIEM) solution is extremely 

important due the fact that, if even a small error exists, numerical instability may 

be introduced. According to Sen [7], accuracy of (BIEM) solver was improved by 

reduction of numerical errors on the interface. 

In recent years, several researchers have tried to develop the next generation of 

numerical methods (Meshless Particle Methods) which are expected to be superior. 

In the last decade, some mesh free methods have been invented for analyzing the 

free surface phenomena. Smoothed Particle Hydrodynamics (SPH), as a meshless 

particle method, which was originally used to simulate astrophysical phenomena 

may be mentioned as the most famous meshless method to model the free surface 

flows. 

Recently, Crespo et al. [8] proposed a kernel particle method which leads to 

accurate solution near the boundaries. Simulation of solitary wave on Carten 

beach was performed by Monaghan and Kos [9]. They simulated run up and wave 

breaking in laboratory and compared it with the SPH results. Loa and Shao [10], 

by combining SPH and LES, simulated solitary wave in vicinity of slop and 

shallow beaches. They solved Lagrangian form of the incompressible Navier-

Stokes equations. Breaking of solitary waves on slope and shallow beaches were 

also simulated. Furthermore, Dalrymple and Rogers [11] simulated solitary waves. 

They considered different algorithms of filter density and viscosity, and several 

time stepping algorithms were implemented by them. 

In the present article, SPH is applied to generate solitary wave. Wave generation 

is held in a numerical wave tank by a piston with prescribed motion. The wave 
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maker is located on the left side of a wave tank and by generating solitary wave, it 

moves from left side to the right side of the tank and reaches the inclined side of 

tank which has a slope similar to the beaches. In a certain domain, seven solitary 

waves with wave heights to water depth ratios (H/d) of 0.1 to 0.7 are investigated. 

Breaking of solitary wave is also investigated for the ratios H/d=0.794 and 2, 

which satisfy the Mitch condition. Generally, the main novelty of the present 

article is usage of SPH to study the solitary wave characteristics at different H/d 

ratios and the condition in which wave breaking occurs. Moreover, to improve the 

SPH results, the Shepard density filter is implemented in the current study. 

 

2 Fundamentals of SPH 

Smoothed Particle Hydrodynamics is a numerical method with Lagrangian nature. 

The governing differential equations contain   (density), V (velocity), r (space 

vector) and P (pressure tensor) as [12]: 
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In the SPH method, each function f (ri) can be approximated as follows: 
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P,   , V are interpolated using a kernel function [13]. In the above equation, 

          are the particle value and mass at particle j, respectively. Also, a 

derivative of function f is discretized by 

 

(4) 
          

  
  

           

 

In these equations, W is the kernel function. 

 

2.1   Kernel Function Characteristics 

Numerical simulation by the SPH method strongly depends on the Kernel 

function. In the current work, cubic spline kernel function is selected [13] as in 
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where    is (
  

   ), in two dimensions simulations and h denotes the smoothing 

length. 

 

2.2   Density Approximation 

For obtaining the discrete form of   , it is possible to replace    by    [12] as in 
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Furthermore, implementing the density filter causes the results to improve. 

Therefore, Shepard density filter is used in the present study. This filter is a rapid 

and simple density corrector. It is utilized in every thirty steps, and the particle 

density is revised [14]: 
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2.3   Approximation of Navier Stokes Equation in SPH Notation 

To obtain a computational model for the particle’s motion, pressure gradient 

tensor   
 

 
   should be calculated [12]: 
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Substituting this relation into equation 2 would yield in 
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Subsequently, equation of motion of particle becomes 

 

(12)    

  
  

  

  
         

 

    

  

  
       

 

 

 

Continuity equation (1) which contains the velocity gradient is also discretized as 

follows[12]:  
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Substitution of equation 6 into this equation would lead to 

(15) 
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2.4   Boundary Conditions 
 

In this work, dynamic boundary condition [13] is applied. Boundary particles 

have the same behavior as the fluid particles and follow continuity, momentum 

and state equations. Contrary to a fluid particle which has displacement, the 

displacements of boundary particles are zero. Arrangement of boundary particles 

is displayed in Fig.1. 

  

 

 

 

 

 

 

Fig.1. Interaction between fluid particles and boundary particles. 

Based on Eq.10, while a particle reaches the boundaries, density of boundary 

particles are increased. Because of the pressure term (P/ ) in momentum equation, 

the force which acts on the fluid particle increases. When the distance between 

dx dx 

dx/2 dz/2 
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boundary particle and fluid particle decreases, density, pressure and acting force 

on the fluid particle increase by a repulsive mechanism. More details can be found 

in reference [13]. 

 

2.5   Artificial Viscosity 

Artificial viscosity was introduced by Monoghan [14] and applied to SPH 

formulation, due to its simplicity. Based on the SPH formulation, we have 
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in which pressure gradient and     are 
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where   
  

  and  
  

 are: 
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The value of   can be varied based on the type of problem.  

 

3 Wave Paddle 

Generation of solitary wave by a piston wave maker is performed using first order 

theory of solitary wave [15]. Displacement of paddle is based on the following 

equation [15]: 
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where H is wave height,     
  

  
  is wave number and           is 

velocity. Velocity of wave paddle can also be calculated by [15]: 

(23) 
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4 Discussion of Results 

In the initial modeling, based on Sangita’s [1] experiment, the length and flat 

length of the wave tank, water depth and slope of the right side of the tank were 

considered to be 10m, 9.7m, 0.3m and 45 deg, respectively (as shown in Fig.2). 

Wave paddle motions for different H/d ratios are calculated, as presented in table 

1. 

 

 
Fig.2. Computational Domain.  

 

Table 1: Characteristics of the generated solitary waves. 

7 6 5 4 3 2 1  

0.7 0.6 0.5 0.4 0.3 0.2 0.1 H/d 

0.21 0.18 0.15 0.12 0.09 0.06 0.03 H 

0.3 0.3 0.3 0.3 0.3 0.3 0.3 d 

2.601 2.809 3.078 3.441 3.973 4.866 6.882   

 

The results of numerical simulation by SPH are compared to Sangita’s [1] 

findings in Figs.3 through 9. Figure 3 shows the wave height of 0.03 m. The 

computed results display high accuracy in the first 3 seconds and also between 9 

and 10 seconds. Additionally, the wave crest matches very well with Sangita’s [1] 

result. 

 

 
Fig.3. Comparison of solitary wave by Sangita’s results (H/d=0.1) [1].  

Sangita Maiti 

SPH 
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In figure 4, the water depth is 0.3 m and wave height is 0.06 m. Generally, there is 

a 5 percent difference in the entire wave simulation and 2.5 percent difference in 

wave crest in comparison with Sangita’s [1] experiment. Also, there exist some 

inconsistencies at t=4s which may be due to the limitation in implementation of 

more particle’s number.    

 
 

 
Fig.4. Comparison solitary wave by Sangita’s results (H/d=0.2) [1].  

 

For the cases H/d=0.3 and 0.4, simulations display great match with Sangita’s 

simulations (as seen in Figs.5 and 6). For the time interval t=3s to t=5s, there 

exists small difference between the SPH results and Sangita’s [1] findings, but at 

other time instants, SPH results demonstrate great accuracy. 

 

 
Fig.5. Comparison of solitary wave by Sangita’s results (H/d=0.3) [1].  

 

 
Fig.6. Comparison of solitary wave by Sangita’s results (H/d=0.4) [1].  

 

Figures 7, 8 and 9 present the wave profiles for the cases H/d=0.5, 06, and 07, 

respectively. As evidenced in these figures, the numerical findings are in good 
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agreement with Sangita’s results [1]. The wave crest of all three cases coincided 

with Sangita’s model, accurately. In these conditions, wave separates from the 

wave paddle and subsequently starts to develop and reach the designed wave 

height. The wave interacts with the slope beach region and wave run-up will 

appear. 

 

 

Fig.7. Comparison of solitary wave by Sangita’s results (H/d=0.5) [1].  

 

 
Fig.8. Comparison of solitary wave by Sangita’s results (H/d=0.6) [1]. 

 

 
Fig.9. Comparison of Solitary wave by Sangita’s results (H/d=0.7) [1]. 

 

In the presented simulations, solitary waves have not broken. It is due to this fact 

that the Mitch conditions were not satisfied. Based on the Mitch conditions, a 

wave can break when the ratio of wave height to water depth (H/d) is more than 
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0.7. Therefore, in subsequent simulations, two H/d ratios of 0.794 and 2 will be 

investigated. In these circumstances, it is possible to see that solitary waves break 

on a slope beach. The wave tank at the ratio H/d=0.794 has a flat length of 2 

meters and the degree of slope is 5.71 degrees (as seen in Fig.10). Figure 11 

illustrates the result of this simulation. 

 

 
Fig.10. Computational Domain (H/d=0.794). 

  

 

Fig.11. Process of breaking Wave formation (H/d=0.794). 

 

 
Fig.12. Numerical Simulation of breaking wave on slope beach with inclination  

angle of 5.41 degree (H/d=0.794). 
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It can be observed from Figs.10 and 11 that a solitary wave is generated 2 meters 

from the location of the wave maker. The solitary wave moves forward and starts 

breaking. In this simulation, Mitch condition is satisfied and the solitary wave 

breaks at x=4 m. Figure 12 graphically shows the breaking of the solitary wave. 

Finally, numerical simulation of solitary wave is considered where H/d=2. In this 

numerical model, the wave tank’s flat length is 1 meter and the slope of the 

inclined side is 5.71 degrees (as evidenced in Fig.13). Figure 14 shows the results 

of the solitary wave breaking when H/d=2. 

In the last simulation (H/d=2), the solitary wave height, over the spatial interval of 

x=1.4m to 1.6m, reaches the height 0.6m and rapidly starts breaking due to Mitch 

condition satisfaction. When the paddle moves and the wave reaches the 0.6m 

height, the breaking of solitary wave is observed. Wave run up on the inclined 

side of the wave tank can also be seen. The run up is also observed which may be 

due to the incident of the solitary wave. Therefore, the maximum run up through 

our simulations can occur. 

 

 
 

 

 

Fig.13. Computational Domain (H/d=2). 

 
Fig.14. Breaking of Wave (H/d=2). 
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5 Conclusion 

In the present study, solitary wave is simulated by SPH method at different wave 

height to water depth (H/d) ratios. Generating and breaking of the solitary wave is 

very sensitive to the number of particles, which basically means, the more 

particles the more accuracy. Cubic Spline is considered as a kernel function. 

Artificial viscosity was also applied and a filter density scheme is utilized to 

improve the computations.  

After simulating the solitary wave which travels to the end of the wave tank and 

pours on the slope in non-breaking conditions, breaking of the solitary wave was 

also simulated. It was observed that satisfying Mitch condition, at H/d= 0.794 and 

2, can cause breaking of the solitary wave on the inclined side of the wave tank. 

Comparison of the SPH result with that of Sangita’s [1] finding shows good 

accuracy of the present simulations. Some inconsistencies which were detected at 

t=4s of the simulation can probably be improved by increasing the number of 

particles. Overall, it is illustrated that the SPH simulation of the solitary wave has 

great accuracy in comparison with the experimental data. 

Calculating wave force acting on marine structures is among engineers’ concerns. 

Therefore, SPH modeling of solitary waves interacting with the marine structures 

and calculating the force for breakwaters, platforms among others are suggested 

as future studies. 
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