
 
Copyright © 2018 Authors. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted 

use, distribution, and reproduction in any medium, provided the original work is properly cited. 
 

 

International Journal of Engineering & Technology, 7 (4.35) (2018) 939-945 

 

International Journal of Engineering & Technology 
 

Website: www.sciencepubco.com/index.php/IJET  
 

Research paper  

 

 

 

Power Quality Disturbances Classification using Discrete Wavelet  

Transform and Support Vector Machine 
 

Tiagrajah V. Janahiraman*, Muhammad Hazwan Harun 
 

Centre for Signal Processing and Control Systems, Dept of Electronics and Communication Engineering, College of Engineering,  

Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, 43300 Kajang, Selangor, Malaysia 

*Corresponding author E-mail: tiagrajah@uniten.edu.my 

 
Abstract 
 

Power utility providers and power industry service providers face a significant challenge in identifying the type of Power Quality Dis-

turbances (PQD) automatically. This paper discusses a method to classify PQD using signal decomposition, statistical analysis and ma-

chine learning. Firstly, Discrete Wavelet Transform (DWT) is applied on the generated PQD signals to decompose the signal to obtain its 

representation in time and frequency domain. Secondly, first and second order statistical parameters are computed on the selected sub-

band of DWT. These parameters are used as features vector for the machine learning based classifier. Our database consists of 2400 gen-

erated signals of PQD, which were divided into train and test set. Another set of noise corrupted signal database was generated to evalu-

ate the capability of the system. SVM using quadratic kernel was selected as the classifier of the Power Quality Disturbances feature 

vector. Comparisons were also made with other types of classifiers and other types of mother wavelet filter functions. The results show 

that the combination of DWT and SVM managed to classify Power Quality Disturbances with high accuracy and has a strong resistance 

towards noise. 
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1. Introduction 

Pure sinusoidal waveforms of voltage and current at 50 Hz (Ma-

laysia’s power line frequency) without any disruptions or defect in 

waveform at the electrical incoming point is an important aspect 

of power quality. Currently, there is a rapid growth in production 

of innovative electronic gadgets and solar power generation appli 

ances. Certain electronic components may cause electromagnetic 

disturbances or it can be sensitive to power quality issues, thus, it 

has heightened the research interest in power quality [1]. Power 

Quality Disturbances (PQD) is a term that is characterized by the 

power load that causes variations, randomness and failures in 

power grid. Some examples of PQD are sag, swell, interruptions, 

harmonic and flicker [2]. PQD may cause failure or disoperation 

of end-use equipment [3]. 

There are also hybrid PQD which consists of two PQD present 

simultaneously. Example of hybrid PQD are flicker with interrup-

tions, sag with interruptions, and flicker with sag wave. The speci-

fication of period and change of amplitude of the voltage signal 

with respect to its PQD are stated in IEEE 1159 Standards [1]. The 

cause of PQD can be due to start or stop of large load in an elec-

trical system [4], lightning [5], electric arc furnaces and arc welder 

in a weak power system [6]. If PQD are not eliminated, it can  

cause severe damage which leads to failures or breakdown of 

loads that are sensitive in power systems. 

Feature extraction through signal transforms and statistical analy-

sis with pattern recognition using machine learning methods are 

the most important steps in classifying PQD [7]. An example of 

widely used feature extraction tool in digital signal processing is 

Discrete Wavelet Transform (DWT), which was applied by Zhao 

et al [8], for decomposing the PQD signal into 8 layers using 

Daubechies 4 as the mother wavelet function. Chang et al [9] in-

troduced a hybrid approach using DWT with Discrete Fourier 

Transform (DFT) for extracting salient features from PQD. The 

Discrete Wavelet trans- form was used to extract a set of features 

from PQD while Discrete Fourier Transform was used to extract 

another set of features. 

Hilbert Huang Transform was introduced by Saeed et al [10] as a 

tool to extract the features from PQD. This signal analysis algo-

rithm decomposes the signal into Intrinsic Mode Functions which 

provide the user with amplitude and frequency data. In [7], the 

authors introduced modified s-transform to extract features from 

PQD. In the modified S-transform, 2 adjustable variables were 

introduced to control the Gaussian window width, which over-

come the limitation of time resolution in the standard s-transform. 

In the authors’ work, these features were classified using Back 

Propagation Neural Network and Support Vector Machine (SVM). 

Other examples of features extraction method that were reported 

by other researchers are S-transform [7] and Short Time Fourier 

Transform [11]. 

In order to classify the PQD, researchers have used several types 

of machine learning methods such as Decision Tree [12], SVM [8], 

Probabilistic Neural Network (PNN) [2], Ensembles method [13] 

and Artificial Neural Network [14]. Mohanty et al [15] utilized 

SVM to classify the PQD, which has better generalization when 

compared to conventional classifier. This classifier can handle 

very large feature space. SVM is suitable for binary and multi-

class automatic classification problems like protein classification, 

fault in power transformer, and PQD. In [8], SVM was improved 

by using Particle Swarm Optimization (PSO) to find the optimal 

tunable parameters, (C, γ), to improve the classification accuracy. 

Extreme Learning Machine was used by Zhang Et al [7] to classi-

fy the PQD features. This classifier has the advantage of simpler 
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structure and fast training approach which makes it suitable for 

rapid development. In [2], classification performance of PNN was 

improved by introducing Artificial Bee Colony (ABC), which is 

used as feature selector. The crucial parameter in PNN, which is 

the spread constant, and most salient features in a large dataset is 

determined using ABC. 

This paper discusses the usage of Discrete Wavelet Transform 

(DWT) for PQD signal decomposition which is detailed in Section 

2. Section 3 details the statistical analysis that was performed on 

selected sub- band of WT. The classification of PQD using SVM 

is detailed in Section 4. Section 5 discusses the simulated results 

and the paper is concluded in 6. 

2. Wavelet Transform 

Similar to Fourier Transform, Wavelet Transform has the ability 

to analyse a stationary signal and decompose into different scales 

and levels of resolution by dilating a type of mathematical func-

tion. An example of these level of decomposition can be seen in 

Figure 5. 

Fourier transform has the ability to describe a signal in time do-

main as a global representation, whereas wavelet transform is 

capable of extracting local representation in time and frequency 

domain for a given signal. These characteristics are vital for ex-

tracting distinct and high discriminatory features from PQD in 

time and frequency domain where disturbance transitions are well 

hidden within PQD events [16]. The Continuous Wavelet Trans-

form (CWT) for a given signal in terms of mother wavelet func-

tion, ψ, is given in equation 1. 
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Constants m and n represent scale and translation parameters in 

Equation 1. The term m, which is the scale parameter, represents 

the length of wavelet and oscillatory frequency. Term n represents 

the shifting location. However, for digital computing analysis 

some redundant information are contained within CWT, thus, 

DWT, represented in equation 2, is more preferable when com-

pared to CWT [2] [17] [16]. 
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In DWT applications, determination of suitable mother wavelet 

function plays an important role as every application may require 

different types of function. Haar, Morlet Dmey, Daubachies, 

Coiflets and Mexican are some of the types of mother wavelet 

functions that were used by other researcher to analyze PQD [2]. 

Figure 1 and Figure 2 shows mother wavelets or ψ of Dmey and 

Daubechies 4 respectively obtained from MATLAB. In this paper, 

Daubachies 6 was selected as the mother wavelet function. 

 

 
Fig 1: Dmey mother wavelet 

 
Fig 2: Daubechies 4 mother wavelet 

 

Figure 3 shows the wavelet decomposition flow. The original 

waveform will be decomposed into decomposition of level 1 

and approximation of level 1 using Equation 2. The approxi-

mation of level 1 will be decomposed into approximation of 

level 2 and decomposition of level 2. The process will be re-

peated until the desired level. An example of Daubechies 4 

level 4 decomposition of normal waveform is shown in Figure 

4. 

3. Statistical Feature Extraction on Discrete 

Wavelet transform 

From the decomposed sub-band, first order and second order statis-

tical features listed in Table 1 were computed. Then, all the comput-

ed data were normalized based on type of features. 

4. Support Vector Machine 

Support Vector Machine(SVM) is a suitable tool that can be used to 

classify dataset with large number of samples and features using its 

associated learning algorithms. By introducing the kernel functions, 

SVM can achieve the non-linear classification[8] [15]. Samples in 

the transmission space will be transformed into higher dimensional 

space, which can be easily separated linearly. This transformation 

is calculated using kernel functions. The construction of optimal 

hyperplane in the transformed higher dimensional space with 

maximum margin between positive and negative samples is 

achieved using SVM. 

Let the training dataset, xi, consisting of m samples with 

corresponding label vector, y ∈ {+1, −1} (i.e. + 1 for class 1 and -1 

for class 2) to represented as equation 3. 

 

D = {(x, y), xi ∈ Rn, y ∈ {+1, −1}, i = 1, 2, ... , m}        (3) 

  

For linearly separable data, we can define hyperplane as 

wT x + b = 0, w ∈ Rn, b ∈ R          (4) 

Table 1: First and Second Orders Statistical Parameter Formulas 
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Fig 3: Wavelet Transform Decomposition Chart 

 

 
(a) Sag Wave 

 

 
(b) First Level Decomposition 

 
(c) Second Level Decomposition 

 
(d) Third Level Decomposition 
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(e) Fourth Level Decomposition 

Fig 4: Wavelet Decompositions 

 
Fig 5: Discrete Wavelet decomposition waveform 

  

here w is an n-dimension vector and b is a constant. The decision 

position for the hyperplane which gives separation in the higher 

dimensional space is determined by the values w and b. 

Equation 5 states the condition that must be fulfilled in order to obtain 

an hyperplane with maximum margin for separating the training 

vector. 

 

yi(w
T xi + b) ≥ 1   i = 1, 2, . . . m                          (5) 

 

The distance between the positive and negative samples in the 

corresponding high dimensional space can be calculated using 

equation 6. 
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Thus, construction of optimal classification hyper-plane is converted to 

solve the maximum of the classification interval, namely the 

minimization problem of ||w||. 
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where i = 1,  2,  . . . ,  m. 

 

To solve for the optimal hyperplane, equation 7 can converted into 

quadratic programming due to the adoption of Lagrange algorithm 

and inclusion on Lagrange multipliers, α = α1,..., αn. Support 

vectors are samples which appears in the interval of separated 

planes, represented as xi. Thus, w = ∑i αiyixi, can be expressed by 

equation 8 as a classification function. 
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The objective function can be summarized as in equation 9 which 

deals with non-separable data in the input space. 
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where ζ is a slack variable and C is a penalty factor. 

A non-linear transformation, (.) , optimal separating hyperspace 

can be solved by mapping the input space into features space 

which is a higher dimensional space [18]. Equation 10 represent 

the inner product computation. 

 

)()(),( jiji xxxxK  =        (10) 

 

where the inner product in Hilbert function can be represented as 

kernel function, K(xi, x j ). An example of kernel function is the 

polynomial kernel which is defined in equation 11 for degree-d 

polynomial. 

    

K(xi, x j ) = (xT y + c)d        (11) 

 

The quadratic kernel, by substituting d = 2 in equation 11, was used 

in this paper. Thus, equation 12 summarizes the final classification 

function. 
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5. Simulation and discussion 

Based on the noise equations given in Table 2, which were 

obtained from [2], 12 PQD were generated and used as train 

dataset.  The train dataset consist of 200 samples for each PQD, 

making it a total of 2400 training samples produced for the 

simulation. Figures 6 to 12 shows the plot of PQD waveforms. 
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These train dataset is then processed using Daubechies 6 

m o t h e r  w a v e l e t  f u n c t i o n  b a s e d  WT to obtain the 

level 8 decomposition sub-band. The general flow chart of the 

simulation is given in Figure 13. 

 

Table 2: First and Second Orders Statistical Parameter Formulas 

Label Power Qual-

ity Disturb-
ances 

Mathematical equations Parameters 

C1 Normal y(t) = A[1 ± α(u(t − t1) − 

u(t − t2))] sin(ωt) 

α ≤ 0.1; T ≤ t2 − t1 
≤ 9T 

C2 Sag y(t) = A[1 − α(u(t − t1) − 
u(t − t2))] sin(ωt) 

0.1 ≤ α ≤ 0.9; T ≤ t2 
− t1 ≤ 9T 

C3 Swell y(t) = A[1 + α(u(t − t1)  − 

u(t − t2))] sin(ωt) 

0.1 ≤ α ≤ 0.8; T ≤ t2 
− t1 ≤ 9T 

C4 Interruption y(t) = A[1 − α(u(t − t1) − 
u(t − t2))] sin(ωt) 

0.9 ≤ α ≤ 1.0; T ≤ t2 
− t1 ≤ 9T 

C5 Harmonics y(t) = A[α1 sin (ωt) + α3 

sin (3ωt) + α5 sin (5ωt) + 
α7  sin (7ωt)] 

0.05 ≤ α3 α5 ≤ 0.15; 
12 = i

 

C6 Sag with 

harmonics 

y(t) = A[1 − α(u(t − t1) − 

u(t − t2))][α1 sin (ωt) + α3 

sin (3ωt) + α5 sin (5ωt)] 

0.1 ≤ α ≤ 0.9; T ≤ t2 
− t1 ≤ 9T 

0.05 ≤ α3 α5 ≤ 0.15; 
12 = i

 

C7 Swell with 

harmonics 

y(t) = A[1 + α(u(t − t1) − 

u(t − t2))][α1 sin (ωt) + α3 

sin (3ωt) + α5 sin (5ωt)] 

0.1 ≤ α ≤ 0.8; T ≤ t2 
− t1 ≤ 9T 

0.05 ≤ α3 α5 ≤ 0.15; 
12 = i
 

C8 Interruption 

with har-

monics 

y(t) = A[1 − α(u(t − t1) − 

u(t − t2))][α1 sin (ωt) + α3 

sin (3ωt) + α5 sin (5ωt)] 

0.9 ≤ α ≤ 1.0; T ≤ t2 
− t1 ≤ 9T 

0.05 ≤ α3 α5 ≤ 0.15; 
12 = i
 

C9 Flicker y(t) = A[1 + αf sin (βωt)] 

sin(ωt) 

0.1 ≤ αf ≤ 0.2;5 ≤ β 

≤ 20 Hz 

C10 Flicker with 
harmonics 

y(t) = A[1 + αf sin (βωt)] 
sin(ωt) [α1 sin (ωt) + α3 

sin (3ωt) + α5 sin (5ωt)] 

0.1 ≤ αf ≤ 0.2;5 ≤ β 
≤ 20 Hz 

0.05 ≤ α3 α5 ≤ 0.15; 
12 = i
 

C11 Flicker with 

sag 

y(t) = A[1 + αf sin (βωt)] 

sin(ωt) [1 − α(u(t − t1) − 
u(t − t2))] 

0.1 ≤ αf ≤ 0.2;5 ≤ β 

≤ 20 Hz 
0.1 ≤ α ≤ 0.9; T ≤ t2 

− t1 ≤ 9T 

C12 Flicker with 

swell 

y(t) = A[1 + αf sin (βωt)] 

sin(ωt) [1 + α(u(t − t1) − 
u(t − t2))] 

0.1 ≤ αf ≤ 0.2;5 ≤ β 

≤ 20 Hz 
0.1 ≤ α ≤ 0.8; T ≤ t2 

− t1 ≤ 9T 

5.1 Training Classifier 

The normalized dataset obtained from Table 2 is then used to 

establish the classification model. To examine the capability of 

our classification model and to mitigate the problem of over-

fitting, we utilized the 5 fold cross-validation method. SVM 

with quadratic kernel was selected in this simulation. The 

confusion matrix, that allows visualization of the performance of 

the classification model, was generated from the experimental 

results is tabulated in Table 3. From the results, it can be 

observed that the classifier managed to produce an accuracy of 

100% for almost all the PQD except for Harmonics hybrid PQD 

(harmonics + sag and harmonics + swell). Here, the harmonics 

with swell PQD is often misclassified as harmonics with sag 

PQD since they are very similar. The average classification 

accuracy is 92%. 

3. Conclusion  

This paper presented 12 types of PQD that commonly occur 

in electricity grid and power systems. In order to classify the PQD, 

simulated signal were decomposed using DWT. First order and 

Second order statistical features were computed on the sub-band 

produced by DWT. The computed statistical parameter were 

used as features vector for the classifier. This paper shows that 

the combination of Daubechies 6 WT and SVM have produced 

a better results in accuracy compared with other combinations 

of DWT and classifier in classifying PQD even with added 

noise to the signal. 

Table 3: Confusion Matrix (given in %) 
 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 

S1 100            

S2  100           

S3   99          

S4    100         

S5     100        

S6      53 48      

S7      47 52      

S8        100     

S9         100    

S10          100   

S11           100  

S12   1         100 

 

 
Fig 13: Flow Chart of the simulation 
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Fig. 6: Normal Wave 

 

 
Fig. 7: Harmonics Wave 

 

 
Fig. 8: Sag Wave 

 

 
Fig. 9: Swell Wave 

 

 
Fig. 10: Interruption Wave 

 

 
Fig. 11: Harmonics with Sag wave  

 

 
Fig. 11: Harmonics with Swell wave  

 

 
Fig. 12: Harmonics with interruption wave  
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