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Abstract 

Composites materials are needed because of the widely used in structures and designs. In this work, the stress analysis of two-

dimensional bilayer composite materials has a different passion ratio have studied. The materials under consideration are assumed to be 

perfectly bonded together. Finite difference method is used for the solution of two-dimensional elastic problems. In each layer of the 

composite, the mechanical properties are isotropic. The results are observed that the results agree well within the acceptable limit, which 

also confirms the reliability of the finite difference method. Changing in Poisson’s ratio in any layer has significant effects on the results 

of all layers of the bilayer composite. Due to the mathematical expressions of stresses and displacements for two-dimensional elastic 

problems, the study of the effects of Poisson’s ratio has a significant influence. 
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1. Introduction

The composite material can be formed by combining materials to 

form an overall structure that has better than the individual 

components. Various methods have been used to define the 

biolayer materials to obtain a better mechanical property [1-3]. 

Graphene has a better mechanical properties compared to other 

materials. The  Graphene has a breaking strength over 100 times 

greater than a hypothetical steel film for the same thickness [4, 5]. 

The graphene bilayer was two layers of graphene having different 

properties. In addition, the graphene has interesting mechanical 

and electrical properties [7,6]. The resulted graphene layers make 

the material promising candidates for optoelectronic and 

nanoelectronic applications. Stress analysis could be performed on 

the bilayer graphene under mechanical loading. Numerous cases 

[8] in which the elementary methods of strength of materials are 

inadequate to provide satisfactory and accurate information 

regarding stress distribution in engineering structures.  

Long et al. [9] predicted the nominal stress-strain curves of a 

multi-layered composite material by FEM Analysis. The analytic 

solution performed stress-strain analysis of the laminates with 

orthotropic layers using Classical Laminate theory considering the 

thermal loading [10]. Some researchers have used finite element 

technique for stress analysis of some layered materials [11]. 

Challenges with various mechanical loadings were not discussed 

in these studies. The determination of the stresses for composite 

lamina considering directional mechanical properties was 

performed [12]. Therefore, stress analysis in layer to layer 

materials as well as at the interfaces is yet to be solved by this 

approach.  

In this work, development of finite difference scheme for the 

elastic body and boundary conditions at the interface of the bilayer 

composite isotropic materials. The investigation of displacement 

and stress distribution in the layers as well as at the interface were 

discussed. Also, the stresses in composite materials for different 

combinations were analyzed. 

2. Mathematical Model and Procedure

In the analysis, the bilayer composite materials undergoing the 

action of mechanical loadings are perfectly elastic and the 

deformations are very small. The displacements, strains, and 

stresses in a deformable body are related to each other. In this 

analysis, the deformations of the elastic body are considered very 

small. Hence, the deformation is elastic. The state of strain at any 

point could be completely defined by six components of strain: εx, 

εy, εz, γxy, γyz, and γzx. By definition the normal and shear strain 

can be given by [12]: 
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The generalized Hooke’s law suggests that each of the stress 

components is the linear function of the strain components.  

𝜀𝑥 =  
1

𝐸
 [𝜎𝑥 −  𝜇(𝜎𝑦 + 𝜎𝑧)]𝜀𝑦 =  

1

𝐸
 [𝜎𝑦 −  𝜇(𝜎𝑥 + 𝜎𝑧)]

𝜀𝑧 =  
1

𝐸
 [𝜎𝑧 −  𝜇(𝜎𝑥 + 𝜎𝑦)]   (3) 

Where E is the modulus of elasticity and μ is the Poisson's ratio. 

The following equations can be obtained [12] for static 

equilibrium  
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For plane stress condition the cubic element reduces to a thin 

rectangular block and nobody forces acting on that block. Hence 

the equilibrium equations yield to 
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At the boundary they must be in equilibrium with external forces 

on the boundary and the external forces is considered as the 

continuation of the internal stress distribution. So the conditions of 

equilibrium at the boundary can be written as [12]: 

𝜎𝑛 =  𝜎𝑥𝑥. 𝑙2 + 𝜎𝑦𝑦. 𝑚2 + 2𝜎𝑥𝑦. 𝑙 𝑚 

𝜎𝑡 =  𝜎𝑥𝑦. (𝑙2 − 𝑚2) + (𝜎𝑦𝑦 − 𝜎𝑥𝑥). 𝑙 𝑚           (6) 

 

Where σn and σt are the normal and tangential components of the 

surface forces acting on the boundary per unit area and l, m are the 

direction cosines of the normal to the surface. The normal 

component of displacement un and the tangential component ut 

acting on the boundary surface can be expressed by 

 

𝑢𝑛 =  𝑢𝑥. 𝑙 + 𝑢𝑦. 𝑚  

𝑢𝑡 =  𝑢𝑦. 𝑙 − 𝑢𝑥. 𝑚                                                         (7)

       

To determine the stress in the two-dimensional elastic body, it is 

necessary to find the solution of the equilibrium equations (Eq. 5). 

For two time two-dimensional tree strain components can be 

expressed in terms of regarding of displacement components as  
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Since these three strain components are expressed by two 

functions only, they cannot be related arbitrarily among 

themselves. There exists a certain relationship among the strain 

components, which is expressed as, 
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This differential relation is called the condition of compatibility. It 

must be satisfied by the strain components to ensure the existence 

of functions σx and uy connected with the strain components by Eq. 

8. Elimination of strains regarding stresses, equation nine yields to 
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The method of solving these equations is through the introduction 

of a function φ(x,y), known as Airy stress function, defined as 
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which satisfies equations (Eq. 6) and transforms the equation (Eq. 

10) into 
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Mathematical Formulation regarding Displacement Potential 

Function 

The equilibrium equations for two-dimensional elastic problems 

regarding displacements components are as follows 
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A new potential function approach involves an investigation of the 

existence of a function defined regarding the displacement 

components. In this approach, an attempt had been made to reduce 

the problem to the determination of a single variable. A function 

ψ(x,y) is thus defined regarding displacement components as, [12] 
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with this definition of ψ(x,y), the first of the two equations (13) is 

automatically satisfied. Therefore, ψ has only to satisfy the second 

equation. Thus, the condition that ψ has to satisfy is  
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Therefore, the problem is reduced to the evaluation of a single 

variable ψ(x,y) from the above bi-harmonic partial differential 

equation. 

In order to solve the problem by solving for the function ψ of the 

bi-harmonic equation (Eq. 15), the boundary conditions should be 

expressed regarding ψ. The boundary conditions are known 

restraints and loadings, that is, known values of components of 

stresses and displacements at the boundary. The relation between 

known functions and the potential function ψ at the boundary are 

[12] 
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From the above expressions, the boundary conditions are 

concerned, either known restraints, stresses and combinations of 

stresses and displacements. The boundary conditions converted to 

finite difference expressions regarding ψ at the boundary. 

Considering pragmatic applicability, the rectangular components 

are converted into normal and tangential components, as these are 

known at the boundary using the following relationship (Eq. 7 and 

Eq. 9) [12]. 

2.1 Validation 

The validation of program consists of a bilayer composite material 

under axial loading as shown in FIGURE 1. The program solves 

the displacement and stress distributions. The problem is 

considered as plane stress problem. The left side of the bilayer 

composite material is fixed while the right side is under uniform 

normalized tensile stress. The geometry of the problem is square 

having a/b=1.0 and a=b=25 unit. This solution for stress and 

displacement distribution by using finite difference method and 

the finite element method is obtained by taking μ1=0.32, μ2=0.28. 
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The mesh size selected for FDM analysis is 0.02 as shown in 

FIGURE 4.2 i.e, mesh length, h=0.5. In the mesh sensitivity curve 

for FEM analysis, as shown in FIGURE 4.3.   

 

 
Fig. 1: Bilayer material under axial loading 

In both FEM and FDM analysis, u and v are continuous over the 

bilayer composite. However, there are two values of each stress 

component one is for upper material and one is for lower material. 

Although there is a single nodal point at the interface it is a 

perfectly bonded two nodal point, two nodal points from upper 

and lower by both the method. The two values of each stress 

component are obtained and the discontinuity in the distribution of 

stress at the connection point of the composite material is obtained. 

 

 

 

 

 
Fig. 2: (a) Variation of maximum displacement (v max/b) with mesh size by FDM (b) Variation of maximum displacement (v max/b) with mesh size by 

FEM. 

 

The distribution of σxy as shown in FIGURE 4.6 matches up with 

each other by FDM and FEM method in different sections of the 

bilayer except at the top and bottom boundary points of section at 

y/b=0.0. The upper corner point could be considered at the both 

top and left boundary. Similarly, the lower corner point could be 

considered at the both bottom and left boundary. If top boundary 

condition is applied at the upper corner point, there is mismatch in 

results of boundary point by FDM and FEM. In FDM, there is 

provision to apply either of the two boundary conditions at the 

corner points. If left boundary conditions are applied at the upper 

and lower corner points, the FDM result becomes consistent with 

the FEM results. The distribution of σy at various sections of  

The bilayer composite by FDM method is shown in FIGURE 4.8. 

It indicates that for this particular problem stress at section 

y/b=0.0 is very significant as compared to the other sections of the 

material. At other sections of the bilayer composite, the variation 

of the stress σy is very small and could not be discerned. Figure 4. 

shows that at y/b= 0.0,1.0 and 2.4. At y/b=0.0, the distribution of 

stress σ ̅y by FDM and FEM methods matches up with each other 

except at the upper and lower boundary points and at interface 

points as shown in FIGURE 4.10. The FEM result shows smaller 

value of stress σ ̅y at the boundary corner points (most critical 

point in engineering point of view as it correspond the highest 

stress) than FDM result. FDM result for distribution of σy exactly 

matches up with FEM result. 

 
Fig. 3: (a)Comparison of normalized shear stress distribution at different sections of the bilayer composite (b) Comparison of normal stress (σy) 
distribution at y/b =0.0. (c) Comparison of normal stress (σy/E) distribution at y/b =1.0. (d) Comparison of normal stress (σy) distribution at y/b =0.24. 
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3. Result and Discussion 

The distribution of stress and displacement is obtained for various 

combinations of material properties as well as for various types of 

boundary conditions. The stress and displacement distributions at 

the interface are also analyzed. The effect of Poisson’s ratio on the 

stress and displacement distribution is studied. several 

combinations of material are taken into consideration. Keeping the 

constant Poisson’s ratio in the upper material, Poisson’s ratio has 

been changed in the lower material. For pragmatic purpose, the 

changes are limited to μ2 = 0.2 to 0.4 for lower material and for 

upper material μ1 = 0.3. At a particular section y/b=0.24, the 

normalized displacement component (u/a) distribution for 

different Poisson’s ratios of the bilayer composite is shown in 

FIGURE 4.  

The magnitude of the displacement component (u/a) increases in 

both upper and lower material as μ2 increases, although, Poisson’s 

ratio is constant in the upper material. FIGURE 4depicts the 

variation of displacement component (v/b) for different Poisson’s 

ratios of lower material. As Poisson’s ratio of the lower material 

increases the displacement component (v/b) in, the lower material 

decreases. Although Poisson’s ratio is constant in the upper 

material, displacement component (v/b) distribution in the upper 

material is affected by the variation of Poisson’s ratio in the lower 

material. As Poisson’s ratio of the lower material increases the 

displacement component (v/b) in the upper material increases. At 

the same Poisson’s ratio in upper and lower material, the 

displacement component (v/b) distribution is symmetrical that 

verifies the other results as the same program is used for other 

combinations as shown in FIGURE 4. 

 

 
Fig. 4: (a) Variation of displacement component (u/a) for different Poisson’s ratios at y/b=0.24 of the bilayer composite. (b) Variation of displacement 

component (v/b) for different Poisson’s ratios at y/b=0.24 of the bilayer composite. 

 

FIGURE 5depicts the variation of normalized normal stress (σx/ 

σyo) for different Poisson’s ratiosat y/b=0.24 of the bilayer 

composite. It shows that there is trivial change in normal stress 

(σx) distribution in the upper material where Poisson’s ratio is 

constant. However, in the lower material, the normal stress (σx) 

increases as Poisson’s ratio increases. For all cases of different 

Poisson’s ratios in upper and lower material, there is bumping at 

the interface. It is noted that normal stress (σx) decreases more as 

Poisson’s ratio decreases from 0.3 to 0.2 than it increases when 

Poisson’s ratio increases from 0.3 to 0.4. The variation of 

normalized normal stress (σy/ σyo) for different Poisson’s ratiosat 

y/b=0.24 of the bilayer.  

Composite is shown in FIGURE 5. It shows that for same 

Poisson’s ratio in the upper and lower material the normal stress 

(σy) distribution is exactly symmetrical about the interface line. 

When Poisson’s ratio in the lower material decreases the normal 

stress (σy) decreases in, the lower material but increases in the 

upper material and the opposite phenomenon occurs when 

Poisson’s ratio increases. For the same amount of increment and 

decrement of Poisson’s ratio from 0.3 causes higher bumping at 

the interface during the decrement than the increment. It could be 

noted that the wavy nature in the curve of normal stress (σy) 

distribution is more where the Poisson’s ratio is less as compared 

to each other. 

 

 
Fig. 5: (a)Variation of normal stress (σx/ σyo) for different Poisson’s ratios at y/b=0.24 of the bilayer composite (b) Variation of normal stress (σy/ σyo) 

for different Poisson’s ratios at y/b=0.24 of the bilayer composite. 

 

FIGURE 6 illustrates the variation of normalized shear stress (σxy/ 

σyo) for different Poisson’s ratiosat y/b=0.24 of the bilayer 

composite. In this FIGURE less number of Poisson’s ratios is 

taken for comparison to avoid the clumsiness of the FIGURE as 

the variation of shear stress (σxy) is minimal. It shows that when 

Poisson’s ratio is lower in the lower material. The magnitude of 

shear stress (σxy) is lower in both materials and in case of higher 

Poisson’s ratio in the lower material the magnitude of shear stress 

(σxy) is lower. It is noted that the shear stress (σxy) distribution is 

anti-symmetric and at the top and bottom boundary the shear 

stress satisfies the boundary condition. 
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Fig. 6: Variation of shear stress (σxy/ σyo) for different Poisson’s ratios at y/b=0.24 of the bilayer composite. 

 

The variation of normalized displacement component (u/a) for 

different Poisson’s ratios at y/b=0.50 of the bilayer composite is 

shown in FIGURE 7. It shows that, the intersecting point of the 

displacement component (u/a) distribution curve shifts to the right 

as compared to that in section y/b=0.24. The distinction of the 

variation of displacement component (u/a) is more prominent in 

the upper material as compared to that in section y/b=0.24. 

FIGURE 7represents the variation of normalized displacement 

component (v/b) for different Poisson’s ratios at y/b=0.50 of the 

bilayer composite. It shows that displacement component (v/b) is 

higher in the material of lower Poisson’s ratio. 

 
Fig.7: (a) Variation of displacement component (u/a) for different Poisson’s ratios at y/b=0.50 of the bilayer composite (b) Variation of displacement 
component (v/b) for different Poisson’s ratios at y/b=0.50 of the bilayer composite. 

 

Variation of normalized normal stress (σy/ σyo) for different 

Poisson’s ratios at y/b=0.50 of the bilayer composite is 

represented in FIGURE 8. The wavy nature of the normal stress 

(σy) distribution is less as compared to that in section y/b=0.24 as 

depicted in FIGURE 5. FIGURE 8represents the variation of 

normalized normal stress (σx/ σyo) for different Poisson’s ratios at 

y/b=0.50 of the bilayer composite. As shown in this FIGURE, the 

normal stress (σx) distribution is discerned in the upper material 

that could not be discerned in case of section y/b=0.24. There is 

bumping in the normal stress (σx) for all cases of different 

Poisson’s ratios in the upper and lower material. For the same 

Poisson’s ratio in the upper and lower material, the normal stress 

(σx) distribution is symmetrical about the interface line. 

 

 

 

 
Fig. 8: (a)Variation of normal stress (σy/ σyo) for different Poisson’s ratios at y/b=0.50 of the bilayer composite (b) Variation of normal stress (σx/ σyo) 
for different Poisson’s ratios at y/b=0.50 of the bilayer composite. 
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The normalized shear stress (σxy/ σyo) distribution for different 

Poisson’s ratios at y/b=0.50 of the bilayer composite is 

represented in FIGURE 9. Unlike at section y/b=0.24, the shear 

stress (σxy) is negative in both upper and lower material for 

Poisson’s ratio μ2 = 0.20 and 0.26. It shows that the magnitude of 

shear stress (σxy) is higher where the Poisson’s ratio is higher. 

 

 
Fig. 9: Variation of shear stress (σxy/ σyo) for different Poisson’s ratios at y/b=0.50 of the bilayer composite. 

 

4. Conclusion  

The stress and displacement distributions are presented in the 

present analysis for various combinations of mechanical properties 

and loadings. The stresses have a pumping effect at the interface 

due to different mechanical properties. The variation of Poisson’s 

ratio in the lower material has a significant effect on the 

distributions of stresses and displacements. The material with 

lesser Poisson’s ratio experiences higher normalized normal stress 

in the direction of the tensile load than the material with greater 

Poisson’s ratio. However, in case of normalized normal stress in 

the perpendicular direction of tensile loading at the interface, the 

material with lesser Poisson’s ratio experiences less normalized 

normal stress. 
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