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Abstract 

In numerical simulation of hydraulic fracture propagation,   tangent component of the fluid velocity generally considered to be neglected 

near the crack front. Then Reynolds transport theorem yields that the limit of the particle velocity coincides with the vector of the front 

propagation speed. We use this fact in combination with the Poiseuille-type equation, which implies that the particle velocity is always 

collinear to pressure gradient. We show that this specific feature of the hydraulic fracture problem may serve to simplify tracing the front 

propagation. The latter may be traced without explicit evaluation of the normal to the front, which is needed in conventional applications 

of the theory of propagating interfaces. Numerical experiments confirm that, despite huge errors in pressure and even greater errors in its 

gradient, the propagation speed, statistically averaged over a distance of a mesh size, is found quite accurate. We conclude that suggested 

method may simplify numerical simulation of hydraulic fractures driven by Newtonian and non-Newtonian fluids.  
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1. Introduction

Numerical modeling is of significance for hydraulic fracture (HF) 

design [13]. The mathematical formulation of the problem, used for 

modeling, includes the continuity equation and the movement 

equation of the Poiseuille type [14, 15]. Combined, they contain 

second spatial derivatives of the pressure. The pressure is 

commonly evaluated through a hypersingular integral and its values 

are extremely inaccurate in elements intersected by the front (tip 

elements). Errors in the pressure gradient, which has non-integrable 

singularity, are naturally even greater; and they further aggravate 

when evaluating the second derivatives of the pressure. For this 

reason, conventional schemes of HF modeling avoid evaluation of 

the pressure in tip elements. Instead, specially designed numerical 

schemes (e.g. [1]) use asymptotic equations containing the 

module of the velocity rather than the velocity vector itself. This 

leads to the necessity of the normal to the fracture front 

evaluation to find the velocity vector entering the discretized 

continuity equation. In its turn, this leads to the need for using 

conventional methods of the theory of propagating interfaces 

[2, 16]. The latter notably complicates HF modeling. It would be 

of value to develop an alternative approach meeting the continuity 

equation and traces the front propagation without evaluation of 

the normal. The present work aims to develop such a method. 

Recall, that as mentioned in Introduction, the hypersingular 

operator 𝐺, when used in its spatially discretized form, provides 

rather inaccurate results for the nodal values at mesh elements 

intersected by the front (tip elements) and at their neighbors 

(ribbon elements). Therefore, the applicability of the method, 

which avoids explicit evaluation of the normal, depends on errors, 

arising when pressure gradient is used to find the particle velocity 

at a close 

vicinity of the front. We need to study these errors and their 

influence on the final results.  

The next sections present the numerical studies performed by using 

three benchmark solutions. These are the solutions to (i) 

the Khristianovic-Geertsma-de Klerk problem (KGD problem) [5, 
6, 17], given, e.g., in the papers [7, 8]); (ii) the axisymmetric 

problem [9, 10]; and (iii) the truly 3D problem for a pay-layer 

between half spaces with symmetric stress contrast [11, 18]. The 

numerical results show that the method avoiding explicit 

evaluation of the normal may be used in practical calculations. 

Normalization of variables was implemented modelled on 

the article [12]. Accordingly, variables are regarded 

dimensionless unless otherwise specified. 

2. Problem Formulation

The fluid equations for the internal points of a hydraulic fracture 

include (i) the continuity (mass conservation) and (ii) Poiseuille-

type (movement) equation. They are, respectively, (see, e.g. [1, 
3]): 

𝜕𝑤

𝜕𝑡
+ 𝛻 ∙ (𝑤𝒗) + 𝑞𝑙 = 𝑄0(𝑡)𝛿(𝑥, 𝑦)  (1) 

and 

𝒗 = − (
𝑤𝑛+1

𝜇′
)

1/𝑛

|𝛻𝑝|1/𝑛−1𝛻𝑝   (2) 
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where 𝑤 is the opening, 𝒗 is the vector of the particle velocity, 𝑞𝑙

is the term accounting for leak-off, 𝑄0 is the pumping rate, 𝛿(𝑥, 𝑦)
is the Dirac's delta-function, 𝑛 is the fluid behavior index, 𝜇′ =

2 (2
2𝑛+1

𝑛
)

𝑛
𝑀, 𝑀 is its consistency index, 𝑝 is the fluid pressure. 

The pressure is connected with the opening by the elasticity 

hypersingular operator 𝐺 (e.g. [1]): 

𝑝 = 𝐺𝑤.  (3) 

For front points, the propagation is controlled by the speed 

equation following from the Reynolds transport theorem [4]. It is 

𝑑𝒙∗

𝑑𝑡
= 𝒗∗ = 𝒏 lim

𝒙→𝒙∗

𝑣𝑛,  (4) 

where 𝒗∗ is the vector of the propagation speed, 𝑣𝑛 is the normal

component of the particle velocity, 𝒏 is the normal to the fluid front. 

Commonly, it is supposed that the component of the particle 

velocity, which is tangent to the front, is negligible at its vicinity. 

Consequently, 𝑣𝑛 = 𝒗 , where 𝒗 is the vector of the particle velocity

near the front. Then (4) reads 

𝒗∗ = lim
𝒙→𝒙∗

𝒗.       (5) 

Equation (5) and the Poiseuille-type equation (2) imply that the 

propagation speed 𝒗∗ and the normal 𝒏 to the front are both 
collinear to pressure gradient. This non-trivial fact serves us as the 

basis for developing a method to trace the front without explicit 

evaluation of the normal, usually employed (e.g. [1]) in 

frames of the theory of propagating interfaces [2]. Gradient 

of the pressure serves us to find the direction of the 

propagation and to satisfy the continuity equation at points near the 

front without explicit evaluation of the normal.  

The magnitude 𝑣∗ of the speed on the right hand side of (5) is 
defined by the universal asymptotic umbrella (UAU) 

𝑤 = 𝜑( 𝑣∗, 𝑟),       (6) 

𝑤

which expresses the opening 𝑤 via the distance 𝑟 to the front and 

the speed [4]. Commonly, the UAU has a simple almost monomial 

form 𝑤 = 𝐴𝑤(𝑣∗)𝑟𝛼, where 𝐴𝑤 and 𝛼 are known functions of the 

speed 𝑣∗.

Since 𝛼 changes very slowly in a quite narrow interval, inversion 

of (5) in the speed becomes especially simple: 𝑣∗ = 𝐴−1(𝑤/𝑟𝛼). In 
general, the inversion of (6) in the speed is:  

𝑑𝑟

𝑑𝑡
= 𝑣∗ = 𝜑𝑣

−1(𝑤, 𝑟).  (7) 

In a numerical application, equation (7) defines a circle with the 

center at a fixed node 𝒙𝒊 under the UAU (6). A current front passes

through a point 𝒙∗ on its circumference. Since 𝑟 is the distance from

𝒙𝒊 to the front, the tangent to the front and the tangent to the

circumference coincide at the point 𝒙∗. This implies that the current

front is an envelope of circles centered at nodal points under the 

UAU. Clearly, the envelope defines also the normal to the front at 

each its point. This serves to update the front on selected time steps. 

The time interval between successive updating may be quite large 

as the change of the normal is not significant for small time steps. 

The interval may be of order of time, for which the front propagates 

a distance of a mesh size. Hence, the continuity equation may be 

satisfied with sufficiently small time steps without explicit 

evaluation of the normal between successive updating but using the 

pressure gradient to define the particle velocity under the UAU. The 

question is: if using pressure gradient at the near-front zone is 

acceptable as concerns with the accuracy of numerical results? 

3. Numerical results for 1D bench-mark

problem 

Consider the classical KGD problem (see, e.g. [7]). Rough mesh 

with merely five elements along the fracture half-length is used for 

numerical solution. It can be shown, that even for the rough mesh 

employed, the center of the ribbon element is still under the UAU. 

Therefore equation (7) may be confidently used to find the 

absolute values of the propagation speeds and, consequently, the 

current distances 𝑟 from the centers of ribbon elements to the 

front. This serves to conclude if the front still intersects a current 

tip element. If it does not, the tip element becomes a new ribbon 

element and the collections of tip, ribbon, internal and external 

elements are updated.  

Of essence is that at points near the front, the particle velocity, 

entering the continuity equation (1), is evaluated via pressure 

gradient. The results of the calculations are illustrated in Figures 1-

6. Solid lines present the exact values of quantities; dashed curves

correspond to numerical results obtained by using the pressure at 

tip and ribbon elements. 

Fig. 1 presents graphs for the net-pressure at the center of a ribbon 

element within the time interval during which the front propagates 

the distance of a mesh size. As could be expected, particular values 

of the pressure drastically differ from the exact values. The errors 

are of order of hundred percent. The errors in pressure gradient are 

of the order hundreds/thousands percent (fig. 1). 

Fig. 1: Pressure at the center of a ribbon element. Vertical lines mark the 

instants when, due to the front propagation, a tip element becomes a new 

ribbon element 

The particle velocity at the common side of ribbon and tip elements 

is calculated by applying central differences to equation (2). The 

velocities are given in Fig. 2. Again, it can be seen that particular 

values strongly differ from the exact velocities (fig. 2).  

Fig. 2: Particle velocity at ribbon to tip boundary. Vertical lines mark the 

time when ribbon element changes. 

The found particle velocity is used in the discretized conservation 

law (1) to find the opening at the ribbon element. The change of the 
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opening in time is shown in Fig. 3. The  relative error of the opening 

is given in Fig. 4.  

Fig. 3: Opening at the center of a ribbon-element. 

Fig. 4: The relative error of the opening at a ribbon element. 

From the figures, it can be concluded that the conservation law has 

highly favorable smoothing effect on the numerical results. In 

contrast with Fig. 1 and 2 for the pressure and particle velocity near 

the front, Fig 3 evidently demonstrates that the errors in the opening 

are much less. What is of special significance, it appears that the 

error changes its sign near the middle of the interval, during which 

the front travels the distance of a mesh size. As a result, the relative 

average error is 1.45% only.  

The accurate (in average) values of the opening yield quite accurate 

(in average) values of the front propagation speed. The latter, as 

mentioned, is found through the inversion (7) of the UAU (6). The 

graphs are given in Fig. 5. 

Fig. 5: Front propagation speed. 

The fracture length is obtained by integration of the propagation 

speed. Due to the high accuracy of the average value of the speed, 

the accuracy of the half-length is similarly high. Its relative errors 

are presented in Fig. 6. 

Fig. 6: Relative error of the fracture half-length. 

It is also of interest to study the error at points far-away from the 

front. Particularly, the opening at the inlet is of special practical 

significance. Fig. 7 presents the relative error of this opening. It can 

be seen that even at the start time, the error does not exceed 2.2 %. 

It swiftly decreases with time growth.  

Fig. 7. Relative error of the opening at the inlet. 

4. Numerical Results for Axisymmetric

Benchmark Problem 

The positive conclusion on the applicability of the method 

suggested to 1D problem, makes reasonable to extend the study to 

2D fractures in the 3D space. The solution [10] to the 

axisymmetric benchmark problem serves us to estimate errors. 

Below we present the results obtained for a Newtonian (𝑛 = 1) 

and non-Newtonian (𝑛 = 0.6) fluids. They are obtained for a 

rough mesh with merely five nodes along the initial fracture radius 

using explicit Euler method. Time step was taken equal to 10−4 to 

provide the method stability.

For the Newtonian fluid, Fig. 8, 9 present, respectively, the errors 

in the fracture radius and the opening at the inlet.  
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Fig. 8: Relative error of the average (along fracture circumference) fracture 

radius for the Newtonian fluid. 

Fig. 9: Relative error of the fracture opening at the inlet for the Newtonian 

fluid. 

Both graphs evidently show fast dying away of the error with 

growth of the number of mesh elements accompanying the front 

propagation. The maximal error does not exceed 2.5%. 

Similar results for the non-Newtonian fluid are presented in Fig. 10 

and 11, for the radius and the opening at the inlet, respectively.  

Fig. 10: Relative error of the average (along fracture circumference) fracture 
radius for the non-Newtonian fluid. 

Fig. 11: Relative error of the fracture opening at the inlet for the non-

Newtonian fluid. 

From Fig. 10 and 11, it follows that, although the error for non-

Newtonian fluids is a bit greater than that for a Newtonian fluid, it 

is still on a level acceptable for practical applications of the method 

suggested. 

5. Numerical Results for the Benchmark

Problem with Stress contrast 

Consider the benchmark problem with strong stress contrast. The 

pay-layer of the thickness 𝐻 = 0.05 m is located between half-

spaces with the same elasticity module 𝐸 = 3.3 GPa and the same 

Poisson's ratio 𝜈 = 0.4. The stress contrast in the half-spaces is 

Δ𝜎 = 4.3 MPa. The source of the fluid with dynamic viscosity 𝜇 =
30.2 Pa ∙ s is located at the center of the pay-layer. The pumping 

rate is 𝑄0 = 1.7
𝑚𝑚3

𝑠
. For these input data, the benchmark solution 

is obtained by using the implicit level set algorithm (ILSA) [ 1]; 

the solution is given in the paper [11]. The results of calculations 

by the method suggested are presented in Fig. 12 and 13 for the 

time instant 𝑡 = 604 s.  

Fig 12 presents the opening profile at the central cross section.  

Fig. 12: The opening profile at the central cross-section. Bold line denotes 

the boundary of the stress-contrast. 

One may find good correspondence with the results given in Fig. 7 

of the paper [11]. The opening at the inlet evaluated by the method 

suggested is 104.6 mm against 105.5 obtained by the ILSA. 
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Fig. 13: Circles denote distance from the center of ribbon-elements to the facture front. Bold line denotes the boundary of the stress-contrast. 

Fig 13 presents the circles defined by the speed equation (7). Its 

envelope corresponds to the current fracture front. The 

comparison of Fig. 13 with the results given in Fig. 7 of the paper 

[11] shows that the fracture height, evaluated by the method 

suggested is 45.54 mm against 44.57 mm obtained by the ILSA; 

the fracture lengths are, respectively, 136.88 mm and 136.69 mm. 

The agreement confirms the applicability of the method 

developed.     

6. Conclusions

The developed method simplifies tracing the front propagation by 

avoiding evaluation of the normal to the front at each time step. It 

provides acceptable numerical results for the key characteristics of 

a hydraulic fracture (fracture sizes and the opening): its accuracy 

is on the level of the most advanced code ILSA [1]. It is 

applicable to Newtonian, as well to non-Newtonian fluids. It may 

also serve to solve problems with strong stress contrast. 
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