

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET

Research paper

Characterizations of $(\gamma\beta)^{\alpha}(I,K)$ -**Continuous Mappings in Ideal Topological Spaces**

N.Kalaivani^{1*},R.Narmada Devi² and T.Gunasekar³

¹²³Department of Mathematics Vel Tech Rangarajan Dr.Sakunthala R&D Institute of Science and Technology Chennai,India *Corresponding author E-mail:kalaivani.rajam@gmail.com

Abstract

In this paper the notion of $(\gamma\beta)^{\alpha}(I,K)$ -Continuous Mappings is introduced and some of their properties are studied. Further the con-

cept of contra $(\gamma\beta)^{\alpha}(I,K)$ -Continuous Mappings and (γ^{α},β) -I-Continuous Mappings are introduced and properties are analyzed.

Keywords: $(\gamma\beta)^{\alpha}(I,K)$ -Continuous Mappings; contra $(\gamma\beta)^{\alpha}(I,K)$ -Continuous Mappings; (γ^{α},β) - I -Continuous Mappings (2010)AMS Mathematics Subject Classification: 54C05, 54C08.

1. Introduction

The α -open sets, operation on topological spaces, $\tau_{\alpha-\gamma}$, $\tau_{\alpha-\gamma-I}$, $\tau_{\alpha-\gamma-I}$ interior and $\tau_{\alpha-\gamma-I}$ closure operators are introduced respectively by Njastad [1], Kasahara [3], Ogata [4], Kalaivani [5] and Kalaivani et al [6].

In this paper, the notion of $(\gamma\beta)^{\alpha}(I,K)$ -Continuous Mappings, properties are studied. Further the contra $(\gamma\beta)^{\alpha}(I,K)$ -Continuous Mappings is introduced and their properties are analyzed. Also the (γ^{α},β) -*I*-Continuous Mappings, their properties are studied.

2. Preliminaries

The concepts of ideal[2], its properties[7], $A^*(I)$ -local function [8], $X = X^*$ [9], $\tau \cap I = \phi$ [10], $\beta(I,\tau)$ [11], Kuratowski closure operator, Kuratowski* closure operator, γ -semi-open set[12], ($\alpha - \gamma$, β)-continuous mappings[13] are defined, studied and discussed earlier.

Dontechev and Przemki[14], Reilly and Vamanamurthy[15], Tong[16] and Maximilian Ganster and Ivan Reilly [17] studied about α -continuity and decompositions of continuity.

Here f_M denotes the mapping $f:(X,\tau,I) \to (Y,\sigma,K)$ and TX_I,TY_K denotes the ideal topological spaces (X,τ,I) , (Y,σ,K) . Then CM denotes continuous mapping, C denotes continuity, OS denotes open set, CS denotes closed set, inv denotes inverse image, M denotes mapping, IM denotes the identity map-

ping and $(\gamma\beta)^{\alpha}(I,K)$ - CM denotes the $(\gamma\beta)^{\alpha}(I,K)$ -Continuous Mapping.

3. $(\gamma\beta)^{\alpha}(I,K)$ -Continuous Mappings

Definition 3.1. A mapping f_M is said to be a $(\gamma\beta)^{\alpha}(I,K)$ - CM if for each $\beta^{\alpha}K$ -OS,G of TY_K , the inv $f_M^{-1}(G)$ is a $\gamma^{\alpha}I$ -OS in TX_I .

Theorem3.1.Let f_M be a mapping, then the following statements are equivalent:

(i) f_M is a $(\gamma\beta)^{\alpha}(I, K)$ -CM.

(ii) For each element $a \in TX_I$ and $Q \in \sigma_{\beta^{\alpha}K}$ containing $f_M(a)$,

there exists $P \in \tau_{\nu^{\alpha}I}$ containing *a* such that $f_M(P) \subseteq Q$.

(iii) The inv of each $\sigma_{\beta^{\alpha}K}$ -CS of TY_K is a $\tau_{\gamma^{\alpha}I}$ -CS in TX_I . (iv) $cl_{\tau_{\gamma}}(\operatorname{int}^*_{\tau_{\gamma}}(cl_{\tau_{\gamma}}(f_M^{-1}(D)))) \subseteq f_M^{-1}(cl_{\sigma_{\beta}}(D))$ for each $D \subseteq TY_K$. (v) $f_M(cl_{\tau_{\gamma}}(\operatorname{int}^*_{\tau_{\gamma}}(cl_{\tau_{\gamma}}(C)))) \subseteq f_M(C)$ for each $C \in TX_I$.

Proof. (*i*) \Rightarrow (*ii*) Let $a \in TX_I$ and Q be any $\beta^{\alpha}K$ - OS of TY_K containing f_M (a). Let $H = f_M^{-1}(Q)$, then by Definition 3.1 , H is a $\tau_{\gamma^{\alpha}I}$ - OS containing a and $f_M(H) \subseteq Q$.

 $(ii) \Rightarrow (iii)$ Let C be a $\beta^{\alpha} K$ - CS of TY_K . Set $S = TY_K - C$ then S is a $\beta^{\alpha} K$ - OS in TY_K . Let $b \in f_M^{-1}(S)$, by (ii), there exists a $\gamma^{\alpha} I$ -

Copyright © 2018 Authors. This is an open access article distributed under the <u>Creative Commons Attribution License</u>, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

OS, G of TX_I containing b such that $f_M(G) \subseteq S$. We obtain $b \in G \subseteq \operatorname{int}_{\tau_v}(cl^*_{\tau_v}(\operatorname{int}_{\tau_v}(G))) \subseteq \operatorname{int}_{\tau_v}(cl^*_{\tau_v}(\operatorname{int}_{\tau_v}(f_M^{-1}(S))))$ and hence $b \in f_M^{-1}(S) \subseteq \operatorname{int}_{\tau_v}(cl_{\tau_v}^*(\operatorname{int}_{\tau_v}(f_M^{-1}(S))))$. This shows that $f_M^{-1}(S)$) is a $\tau_{x^{\alpha}I}$ -OS in TX_I . Hencewe obtain that, $f_M^{-1}(C) = TX_I - f_M^{-1}(TY_K - C) = TX_I - f_M^{-1}(S)$ is a $\gamma^{\alpha}I$ -CS in TX_I .

 $(iii) \Rightarrow (iv)$ Let *M* be any subset of TY_K . Since $cl_{\sigma_R}(M)$ is a CS in TY_K , by (iii) , $f_M^{-1}(cl_{\sigma_a}(M))$ is a $\gamma^{\alpha}I$ -CS and $TX_I - f_M^{-1}(cl_{\sigma_{\alpha}}(M))$ is a $\gamma^{\alpha}I$ -OS. Thus $TX_{I} - f_{M}^{-1}(cl_{\sigma_{\beta}}(M)) \subseteq \operatorname{int}_{\tau_{\nu}}(cl_{\tau_{\nu}}^{*}(\operatorname{int}_{\tau_{\nu}}(TX_{I} - f_{M}^{-1}(cl_{\sigma_{\beta}}(M))))) =$ $TX_{I} - cl_{\tau_{x}}(\operatorname{int}_{\tau_{x}}^{*}(cl_{\tau_{x}}(f_{M}^{-1}(cl_{\sigma_{\beta}}(M))))).$ Hence $cl_{\tau_u}(\operatorname{int}_{\tau_u}^*(cl_{\tau_u}(f_M^{-1}(M)))) \subseteq f_M^{-1}(cl_{\sigma_g}(M))$.

 $(iv) \Rightarrow (v)$ Let L be any subset of TX_I . By (iv), $cl_{\tau_{v}}(\operatorname{int}_{\tau_{v}}^{*}(cl_{\tau_{v}}(L))) \subseteq cl_{\tau_{v}}(\operatorname{int}_{\tau_{v}}^{*}(cl_{\tau_{v}}(f_{M}^{-1}(f_{M}(L))))) \subseteq f_{M}^{-1}(f_{M}(L))$ and hence $f_M(cl_{\tau_v}(\operatorname{int}^*_{\tau_v}(cl_{\tau_v}(L)))) \subseteq cl_{\sigma_{\beta}}(f_M(L))$.

 $(v) \Rightarrow (i)$ Let H be any $\beta^{\alpha} K$ -OS of TY_K . Then, by (v) $f_M(cl_{\tau_v}(\operatorname{int}_{\tau_v}^*(cl_{\tau_v}(f_M^{-1}(TY_K - H))))) \subseteq cl_{\sigma_{\beta}}(f_M(f_M^{-1}(TY_K - H)))$ $\subseteq cl_{\sigma_{\mathcal{R}}}(TY_K - H) = TY_K - H$. Therefore,

 $cl_{\tau_{v}}(\operatorname{int}_{\tau_{v}}^{*}(cl_{\tau_{v}}(f_{M}^{-1}(TY_{K}-H)))) \subseteq f_{M}^{-1}(TY_{K}-H) \subseteq TX_{I} - f_{M}^{-1}(H)$. Hence we obtain that $f_M^{-1}(H) \subseteq \operatorname{int}_{\tau_v}(cl^*_{\tau_v}(\operatorname{int}_{\tau_v}(f_M^{-1}(H))))$. This implies that $f_M^{-1}(H)$ is a $\gamma^{\alpha}I$ -OS.Hence, f_M is a $(\gamma\beta)^{\alpha}(I,K)$ -CM.

Remark 3.1. Every CM need not be a $(\gamma\beta)^{\alpha}(I,K)$ -CM: Illustrated by the following example.

Example 3.1.Let
$$X = \{d, e, f\}, \tau = \{\phi, X, \{d\}, \{e\}, \{d, e\}, \{d, f\}\}$$

 $\sigma = \{\phi, Y, \{d\}, \{e\}, \{d, e\}, \{d, f\}\}, I = \{\phi, \{d\}, \{f\}, \{d, f\}\}$ and
 $K = \{\phi, \{d\}\}.$

The γ operation on τ is given as follows: $\gamma(M) = cl(M)$, for $\mathsf{M} \in \tau \text{ .Then } \tau_{\gamma^{\alpha}I} = \left\{ \phi, X, \{e\}, \{d, f\} \right\} .$

We define β on σ as follows $H^{\beta} = \begin{cases} H & \text{if } e \in H \\ cl(H) \text{if } e \notin H \end{cases}$

Then
$$\sigma_{\beta^{\alpha}K} = \{ \phi, Y, \{e\}, \{d, e\}, \{d, f\} \}.$$

Hence the IM f_M is a CM, but it is not a $(\gamma\beta)^{\alpha}(I,K)$ - CM, since $\{d,e\} \in \sigma_{\beta^{\alpha}_{K}} \text{ and } f_{M}^{-1}(\{d,e\}) = \{d,e\} \notin \tau_{\gamma^{\alpha}_{I}}.$

Theorem 3.2.Let f_M be a M and I, K are ideals of TX_I, TY_K . If $I = K = \{\phi\}$ or I_n , then the concept of $\alpha - (\gamma, \beta) - C$ and $(\gamma\beta)^{\alpha}(I,K)$ - C are equivalent.

Proof. Follows from the 3.1. Theorem's Proof.

Theorem3.3.Let f_M be a and $L \in \sigma$ М Then $f_M^{-1}(L_{\gamma}^*) = (f_M^{-1}(L))^*$ implies that $f_M^{-1}(cl_{\tau_v}^*(L)) \subseteq cl_{\tau_v}^*(f_M^{-1}(L))$. **Proof.** Since $f_M^{-1}(cl_{\tau_y}^*(L)) = f_M^{-1}(L \bigcup L_y^*) = f_M^{-1}(L) \bigcup f_M^{-1}(L_y^*) \subseteq$

Remark 3.2. The converse of the Theorem 3.3 is not true. It is demonstrated by the example given below.

Example 3.2. Let
$$X = Y = \{1, 2, 3\}$$
,
 $\tau = \{\phi, X, \{1\}, \{3\}, \{1, 2\}, \{1, 3\}\}, \sigma = \{\phi, Y, \{1\}, \{3\}, \{1, 2\}, \{1, 3\}\},$
 $I = \{\phi, \{1\}, \{3\}, \{1, 3\}\}$ and $K = \{\phi, \{2\}\}.$
 γ on τ is defined as follows : $F^{\gamma} = \begin{cases} Fif F = \{1\}\\ F \cup \{3\}if F \neq \{1\} \end{cases}$ for $F \in \tau$.
Then $\tau_{\gamma^{\alpha}I} = \{\phi, X, \{1\}, \{3\}, \{1, 3\}\}.$

Also we define the operation β on σ : for every $\mathbf{F} \in \sigma$, $\mathbf{F}^{\beta} = \begin{cases} \mathbf{F} \, if \, \mathbf{F} = \{1\} \\ \mathbf{F} \, \cup \{3\} \, if \, \mathbf{F} \neq \{1\} \end{cases}$ Then $\sigma_{\beta^{\alpha}K} = \{ \phi, Y, \{1\}, \{3\}, \{1, 2\}, \{1, 3\} \}$

We define a mapping f_M as $f_M(\{1\}) = \{1\}; f_M(\{2\}) = \{2\};$ $f_M(\{3\}) = \{3\}.$

For the subset $\{1,2\} \in \sigma$ we have $f_M^{-1}(\{1,2\})^* = \{1,2\}$ and $(f_M^{-1})^* = \{1,2\}$ $(\{1,2\}))^* = (\{1,2\})^* = \{2\}.$

Thus $f_M^{-1}(P^*) \subseteq (f_M^{-1}(P))^*$ for $P = \{1,2\} \in \sigma$. But f_M^{-1} $(cl^*_{\tau_u}(P)) \subseteq cl^*_{\tau_u}(f^{-1}_M(P))$ for each $P \in \sigma$.

Lemma 3.1. Let $H, C \in TX_I$. Then the following properties hold: (i) $H \in \tau_{\gamma^{\alpha_I}}$ if and only if there exists $U \in \tau$ such that $U \subseteq H \subseteq \operatorname{int}_{\tau_u} (cl^*_{\tau_u}(U))$

(ii) If $H \in \tau_{\gamma^{\alpha}I}$ and $H \subseteq C \subseteq int_{\tau_{\gamma}}(cl_{\tau_{\gamma}}^{*}(H))$, then $C \in \tau_{\gamma^{\alpha}I}$.

Proof. (i) Let *H* be a $\gamma^{\alpha}I$ -OS, then

 $H \subseteq \operatorname{int}_{\tau_v}(cl^*_{\tau_v}(\operatorname{int}_{\tau_v}(H)))$. Let $A = \operatorname{int}_{\tau_v}(H)$. Then,

 $A \subseteq H \subseteq int_{\tau_v}(cl^*_{\tau_v}(A))$.

Conversely, let $A \subseteq H \subseteq int_{\tau_v}(cl^*_{\tau_v}(A))$ for some $A \in \tau$. Since $A \subseteq H$, $A \subseteq int_{\tau_v}(H)$ and hence $cl^*_{\tau_v}(A) \subseteq cl^*_{\tau_v}(int_{\tau_v}(H))$.

Hence we obtain that $H \subseteq int_{\tau_v}(cl^*_{\tau_v}(int_{\tau_v}(H))))$. Then H is a $\gamma^{\alpha}I$ -OS.

(ii) Since H is a $\gamma^{\alpha}I$ -OS, there exists an OS, k such that $\kappa \subseteq H \subseteq \operatorname{int}_{\tau_v}(cl^*_{\tau_v}(\kappa))$ We have $\kappa \subseteq H \subseteq C \subseteq \operatorname{int}_{\tau_v}(cl^*_{\tau_v}(H))$ implies that $\kappa \subseteq \operatorname{int}_{\tau_{\nu}}(cl^*_{\tau_{\nu}}(\kappa))$. Using the (*i*) result, $C \in \tau_{\nu^{\alpha}I}$.

4. Contra $(\gamma\beta)^{\alpha}(I, K)$ -Continuous Mappings

Definition 4.1. A M f_M is said to be a contra $(\gamma\beta)^{\alpha}(I,K)$ -CM if the set $f_M^{-1}(\wp)$ is a $\gamma^{\alpha}I$ -CS in $\tau_{\gamma^{\alpha}I}$ for each $\beta^{\alpha}K$ -OS, \wp of $\sigma_{\beta^{\alpha}K}$.

Definition 4.2. A M f_M is said to be a $(\gamma\beta)^{\alpha}(I,K)$ -CM if the set $f_M^{-1}(S)$ is a $\gamma^{\alpha}I$ -OS in $\tau_{\gamma^{\alpha}I}$ for each $\beta^{\alpha}K$ -OS, S of $\sigma_{\beta^{\alpha}K}$.

Remark 4.1.The concept of contra $(\gamma\beta)^{\alpha}(I,K)$ C and $(\gamma\beta)^{\alpha}(I,K)$ C are independent as shown by the following two examples.

Example 4.1.Let $X = \{k, l, m\}, \tau = \{\phi, X, \{k\}, \{l\}, \{k, l\}, \{k, m\}\}$ and $I = \{\phi, \{k\}\}$.

The γ on τ is described as: $B^{\beta} = \begin{cases} B & if \ l \in B \\ cl(B)if \ l \notin B \end{cases}$

Then $\tau_{\gamma^{\alpha}I} = \left\{\phi, X, \{k, l\}, \{k, m\}\right\}$

Let $Y = \{k, l, m\}, \sigma = \{\phi, Y, \{k\}, \{l\}, \{k, l\}, \{k, m\}\}$ and $K = \{\phi, \{k\}, \{m\}, \{k, m\}\}$. β on σ is given as follows: for $\Box \in \sigma$, $\beta(\Box) = cl(\Box)$. Then $\sigma_{\beta^{\alpha}K} = \{\phi, Y, \{l\}, \{k, m\}\}$.

The M f_M is defined as $f_M(\{k\}) = \{m\}; f_M(\{l\}) = \{k\}; f_M(\{m\}) = \{l\}$. Then for every $P \in \sigma_{\beta^{\alpha}K}, f_M^{-1}(P)$ is a $\gamma^{\alpha}I$ -CS in TX_I . Hence f_M is a contrational $(\gamma\beta)^{\alpha}(I,K)$ -CM. But $f_M^{-1}(\{l\}) = \{m\}$ is not a $\gamma^{\alpha}I$ -OS in TX_I . Hence f_M is not a $(\gamma\beta)^{\alpha}(I,K)$ -CM.

Example 4.2.Let $X = \{p,q,r\}$, $\tau = \{\phi, X, \{p\}, \{r\}, \{p,q\}, \{p,r\}\}$ and $I = \{\phi, \{q\}\}$. Then γ on τ is defined for $D \in \tau$ as follows:

 $D^{\gamma} = \begin{cases} D \text{ if } D = \{p\} \\ D \cup \{r\} \text{ if } D \neq \{p\} \end{cases}$ Then $\tau_{\gamma^{\alpha}I} = \{\phi, X, \{p\}, \{r\}, \{p,q\}, \{p,r\}\}$

Let
$$Y = \{p,q,r\}$$
, $\sigma = \{\phi,Y,\{p\},\{q\},\{p,q\},\{p,r\}\}\)$
and $K = \{\phi,\{p\},\{r\},\{p,r\}\}\)$.
We also define β on σ as follows: $\beta(E) = cl(E)$ for every $E \in \sigma$. Then $\sigma_{\beta^{\alpha}K} = \{\phi,Y,\{q\},\{p,q\},\{p,r\}\}\)$.
We define f_M as $f_M(\{p\}) = \{q\}; f_M(\{q\}) = \{r\}; f_M(\{r\}) = \{p\}\)$.
Then for every $E \in \sigma_{\beta^{\alpha}K}$, $f_M^{-1}(E)$ is a $\gamma^{\alpha}I$ -OS in TX_I . Hence f_M is a $(\gamma\beta)^{\alpha}(I,K)$ -CM. But $f_M^{-1}(\{q\}) = \{p\}; f_M^{-1}(\{p,q\}) = \{p,r\}$ are not $\gamma^{\alpha}I$ -CS in TX_I . Hence f_M is not a contra $(\gamma\beta)^{\alpha}(I,K)$ -CM.

Theorem 4.1. A mapping f_M is a contra $(\gamma\beta)^{\alpha}(I, K)$ - CM if and only if the inv of each $\beta^{\alpha}K$ -CS in TY_K is $\alpha\gamma^{\alpha}I$ -OS in TX_I .

Proof. Proof follows from the Definition 4.1.

Theorem 4.2. Let f_M and $g:(Y,\sigma,K) \rightarrow (Z,\varsigma,W)$ be any two mappings.

(i) $g \circ f$ is a contra $(\gamma\beta)^{\alpha}(I,W)$ -CM, if g is $(\gamma\beta)^{\alpha}(K,W)$ -CM and f_M is contra $(\gamma\beta)^{\alpha}(I,K)$ -CM.

(ii) $g \circ f$ is a contra $(\gamma \beta)^{\alpha}(I, W)$ -CM, if g is a contra

 $(\gamma\beta)^{\alpha}(K,W)$ -CM and f_M is an $(\gamma\beta)^{\alpha}(I,K)$ - CM. **Proof.** Proof follows from the Definition 4.1.

Definition 4.3. A mapping f_M is called a perfectly contra $(\gamma\beta)^{\alpha}(I,K)$ -CM if the inv of each $\beta^{\alpha}K$ -OS in TY_K is a $\gamma^{\alpha}I$ - clopen set in TX_I

Example 4.4.Let $X = \{1, 2, 3\}, \tau = \{\phi, X, \{1\}, \{2\}, \{1, 2\}, \{1, 3\}\},$ and $I = \{\phi, \{1\}\}.$

 $\gamma \text{ on } \tau \text{ as follows: } \mathbf{B}^{\gamma} = \begin{cases} \mathbf{B} & \text{if } 2 \in B \\ cl(B) & \text{if } 2 \notin B \end{cases}$ Then $\tau_{\gamma^{\alpha}I} = \left\{ \phi, X, \{2\}, \{1,2\}, \{1,3\} \right\}$

Let $Y = \{1, 2, 3\}, \sigma = \{\phi, Y, \{1\}, \{2\}, \{1, 2\}, \{1, 3\}\}$ and $K = \{\phi, \{1\}, \{3\}, \{1, 3\}\}\ \beta$ on σ as follows: $\beta(P) = cl(P)$, for $P \in \sigma$ Then $\sigma_{\beta^{\alpha}K} = \{\phi, Y, \{2\}, \{1, 3\}\}$.

We define the M f_M as $f_M(\{1\}) = \{3\}; f_M(\{2\}) = \{2\};$ $f_M(\{3\}) = \{1\}.$

Then for $H \in \sigma_{\beta^{\alpha}K}$, $f_M^{-1}(H)$ is a $\gamma^{\alpha}I$ -clopen set in TX_I . Hence f_M is a perfectly contra $(\gamma\beta)^{\alpha}(I,K)$ -CM.

Remark 4.3. Every perfectly contra $(\gamma\beta)^{\alpha}(I,K)$ -CM is a contra $(\gamma\beta)^{\alpha}(I,K)$ -CM and $(\gamma\beta)^{\alpha}(I,K)$ -CM.

Remark 4.4. A contra $(\gamma\beta)^{\alpha}(I,K)$ -CM may not be perfectly contra $(\gamma\beta)^{\alpha}(I,K)$ -CM. The example given below illustrates this remark.

Let
$$X = \{1, 2, 3\}, \tau = \{\phi, X, \{1\}, \{2\}, \{1, 2\}, \{1, 3\}\}$$
 and $I = \{\phi, \{1\}\}$.
 γ on τ as follows: $B^{\gamma} = \begin{cases} B & if \ 2 \in B \\ cl(B)if \ 2 \notin B \end{cases}$
Then $\tau_{\gamma^{\alpha}I} = \{\phi, X, \{2\}, \{1, 2\}, \{1, 3\}\}.$

Let $Y = \{1, 2, 3\}, \sigma = \{\phi, Y, \{1\}, \{2\}, \{1, 2\}, \{1, 3\}\}$ and $K = \{\phi, \{1\}, \{3\}, \{1, 3\}\}$. β on σ as follows: $\beta(P) = cl(P)$, for $P \in \sigma$ and we obtain that $\sigma_{\beta^{\alpha}K} = \{\phi, Y, \{2\}, \{1, 3\}\}$

We define M f_M as $f_M(\{1\}) = \{3\}; f_M(\{2\}) = \{1\}; f_M(\{3\}) = \{2\}$. Then for every $\mathbf{Z} \in \sigma_{\beta^{\alpha} K}, f_M^{-1}(\mathbf{Z})$ is a $\gamma^{\alpha} I$ -CS in TX_I . Hence f_M is a contra $(\gamma\beta)^{\alpha}(I, K)$ -CM. But $f_M^{-1}(\{2\}) = \{3\}$ is not a $\gamma^{\alpha}I$ -OS in TX_I . Hence f_M is not a $(\gamma\beta)^{\alpha}(I, K)$ -CM.

Theorem 4.3. For the M f_M ,statements described below are equivalent:

(i) f_M is a perfectly contra $(\gamma\beta)^{\alpha}(I, K)$ -CM

(ii) f_M is contra $(\gamma\beta)^{\alpha}(I,K)$ -CM and $(\gamma\beta)^{\alpha}(I,K)$ -CM.

Proof. Follows from the Definitions 4.1, 4.2 and 4.3.

5. (γ^{α}, β) - *I* -Continuous Mappings

Definition 5.1. A subset *A* of an ideal topological space is called a $I\beta$ -OS if $A \subseteq cl_{\tau_v}(int_{\tau_v}(cl^*_{\tau_v}(A)))$

Definition 5.2. A M f_M is defined as a (γ^{α}, β) -*I*-CM if for every $I\beta$ -open set V of TY_K , $f_M^{-1}(V)$ is a $\gamma^{\alpha}I$ -OS in TX_I .

Theorem 5.1. If a M f_M is a $(\gamma^{\alpha}, \beta) - I$ -CM, then f_M is an (γ^{α}, β) -CM.

Proof. Immediate from the above illustrated Theorem 4.1.

Theorem 5.2. Let f_M be a M. Statements given below are same: (i) f_M be a $(\gamma^{\alpha}, \beta) - I$ -CM.

(ii) For each *b* and each $I\beta$ -OS, $H \subseteq TY_K$ containing $f_M(b)$, there exists $G \in \tau_{\alpha_v}$ such that $b \in G$, $f_M(G) \subseteq H$.

(iii) The inv of each $I\beta$ -CS in TY_K is a $\gamma^{\alpha}I$ -CS.

(iv) $cl_{\tau_{\alpha}}(\operatorname{int}_{\tau_{\alpha}}^{*}(cl_{\tau_{\alpha}}(f_{M}^{-1}(B)))) \subseteq f_{M}^{-1}(cl_{\sigma_{\beta}}(B))$ for $B \subseteq TY_{K}$.

(v) $f_M(cl_{\tau_v}(\operatorname{int}^*_{\tau_v}(cl_{\tau_v}((A)))) \subseteq cl_{\sigma_R}(f_M(A))$ for $A \subseteq TX_I$.

Proof. Proof is analogous to the proof of the 4.1. Theorem.

Corollary 5.1. Let f_M be a $(\gamma^{\alpha}, \beta) - I - CM$, then (i) $f_M(cl^*_{\tau_{\gamma}}(\Upsilon)) \subseteq cl_{\sigma_{\beta}}(f_M(\Upsilon))$ for each $\Upsilon \in \gamma - PIO(X)$. (ii) $cl^*_{\tau_{\gamma}}((f_M^{-1}(\Im)) \subseteq f_M^{-1}(cl_{\sigma_{\beta}}(\Im))$ for each $\Im \in \gamma - PIO(Y)$.

Proof. Proof is analogous to the proof to the corollary 4.1.

Definition 5.3. A subset \Box of an ideal TS is said to be a γI -open set with respect to the operation γ on τ if

 $\Box \subseteq \operatorname{int}_{\tau_{\gamma}}(cl^*_{\tau_{\gamma}}(\Box)) \bigcup cl^*_{\tau_{\gamma}}(\operatorname{int}_{\tau_{\gamma}}(\Box)).$

Definition 5.4. A M f_M is called a $(\gamma, \beta^{\alpha}) - I$ -open mapping if the image of each γI -OS in TX_I is a $\beta^{\alpha}I$ -OS of TY_I .

Theorem 5.3. A M f_M is said to be a $(\gamma, \beta^{\alpha}) \cdot I$ -open mapping if and only if for each subset $\aleph \subseteq TY_I$ and each γI -CS, F of TX_I containing $f_M^{-1}(\aleph)$, there exists a $\beta^{\alpha}I$ -CS, $H \subseteq TY_I$ containing W such that $f_M^{-1}(H) \subseteq F$. **Proof.** Let $\wp = TY_I - f_M(TX_I - \Im)$. Since $f_M^{-1}(\aleph) \subseteq \Im$, s. Since f_M is a $(\gamma, \beta^{\alpha}) - I$ - open mapping, then \wp is a $\beta^{\alpha}I$ - CS and $f_M^{-1}(\wp) = TX_I - f_M^{-1}(f_M(TX_I - \Im)) \subseteq TX_I - (TX_I - \Im) = \Im$. Conversely, let ℓ be any γI -OS of TX_I and $\aleph = TY_I - f_M(\ell)$. Then, $f_M^{-1}(\aleph) = TX_I - f_M^{-1}(f_M(\ell)) \subseteq TX_I - \ell$ and $TX_I - \ell$ is a γI -CS. There exists a $\beta^{\alpha}I$ - CS, \mathfrak{H} of TY_I containing \aleph such that $f_M^{-1}(\wp) \subseteq TX_I - \ell$. Then, $f_M^{-1}(\wp) \cap \ell = \phi$ and $\wp \cap f_M(\ell) = \phi$. Therefore, $TY_I - f_M(\ell) \supseteq \wp \supseteq \aleph = TY_I - f_M(\ell)$ and $f_M(\ell)$ is a $\beta^{\alpha}I$ - OS in TY_I . This implies that f_M is a $(\gamma, \beta^{\alpha}) - I$ -open mapping.

Corollary 5.1. If f_M is a $(\gamma, \beta^{\alpha}) - I$ - open mapping, then these properties hold:

(i) $f_M^{-1}(cl_{\sigma_\beta}(\operatorname{int}_{\sigma_\beta}(cl_{\sigma_\beta}(\aleph)))) \subseteq cl_{\tau_\gamma}(f_M^{-1}(\aleph))$ for $\aleph \subseteq TY_I$. (ii) $f_M^{-1}(cl_{\sigma_\beta}^*(O)) \subseteq cl_{\tau_\gamma}(f_M^{-1}(O))$ for γ -preopen set O of TY_I .

Proof. (i) Let \aleph be any subset of TY_I , then $cl_{\tau_x}(f_M^{-1}(\aleph))$ is a γI -

CS in TX_I . By Theorem 4.3, there exists a $\beta^{\alpha}I$ -CS, $\Box \subseteq TY_I$ containing \aleph such that $f_M^{-1}(\Box) \subseteq cl_{\tau_{\gamma}}(f_M^{-1}(\aleph))$. Since $TY_I - \Box$ is a $\beta^{\alpha}I$ - OS, $f_M^{-1}(TY_I - \Box) \subseteq f_M^{-1}(\operatorname{int}_{\sigma_{\beta}}(cl_{\sigma_{\beta}}^*(\operatorname{int}_{\sigma_{\beta}}(TY_I - \Box))))$ and we obtain that

$$\begin{split} f_{M}^{-1}(cl_{\sigma_{\beta}}(\operatorname{int}_{\sigma_{\beta}}^{*}(cl_{\sigma_{\beta}}(\aleph)))) &\subseteq f_{M}^{-1}(cl_{\sigma_{\beta}}(\operatorname{int}_{\sigma_{\beta}}^{*}(cl_{\sigma_{\beta}}(\Box)))) \\ &\subseteq f_{M}^{-1}(\Box) \subseteq cl_{\tau_{*}}(f_{M}^{-1}(\aleph)) \end{split}$$

Therefore $f_M^{-1}(cl_{\sigma_\beta}(\operatorname{int}_{\sigma_\beta}^*(cl_{\sigma_\beta}(\aleph)))) \subseteq cl_{\tau_\gamma}(f_M^{-1}(\aleph))$ (ii) Let O be any γ - preopen set of TY_I . By using (i) result, $f_M^{-1}(cl_{\sigma_\beta}^*(O)) \subseteq f_M^{-1}(cl_{\sigma_\beta}(O)) \subseteq f_M^{-1}(cl_{\sigma_\beta}(\operatorname{int}_{\sigma_\beta}(cl_{\sigma_\beta}(O))))$ $\subseteq f_M^{-1}(cl_{\sigma_\beta}(\operatorname{int}_{\sigma_\beta}^*(cl_{\sigma_\beta}(O))))$

References

- O. Njastad, On some classes of nearly open sets, Pacific J. Math 15,(1965),961-970.
- [2] H.H.Corson and E.Michael, Metrizability of certain countable unions, Illinois J.Math.8(1964)351-360.
- [3] S.Kasahara, Operation- compact spaces, Math. Japonica, 24 (1979), 97.
- [4] H. Ogata, Operations on topological spaces and associated topology, Math.Japonica, 36(1) (1991),175 - 184.
- [5] N.Kalaivani and G.Sai Sundara Krishnan, Operation approaches on α-γ-open sets in topological spaces, Int.J.of Math. Analysis, Vol.7, 2013, no.10, 491-498.
- [6] N.Kalaivani, A-I-EL-Maghrabi and G.Sai Sundara Krishnan, Operation approaches on α-γ-I-open sets and on α-γ-I-continuous functions in topological spaces, J. of the Egyptian Mathematical Society [Production and hosting by Elsevier], vol.22, pp. 265-271.
- [7] T.R.Hamlett and Dragan Jankovic, Ideals in General Topology, Proceedings of the conference General topology and Applications,(1988),115.
- [8] K.Kuratowski, Topology, Vol.I, Academic Press, New York, (1966).
 [9] E.Hayashi, Topologies defined by local properties, volume to the second second
- Math.Ann.,156(1964),205-215.[10] P.Samuels, A topology formed from a given topology and ideal, J. London Math. Soc.(2),10(1975),409-416.
- [11] D.Jankovic and T.R.Hamlett, New topologies from old via ideals, Amer.Math.Monthly,97(1990),295-310.

- [12] G.Sai Sundara Krishnan and K.Balachandran, On γ-semi-open sets in topological spaces, Bull.Cal.Math.Soc., 98, (6),(2006), 517-530.
- [13] N.Kalaivani,D.Saravanakumar and G.Sai Sundara Krishnan, On (α - γ , β)-continuous functions and α -(γ , β)-continuous functions in topological spaces, International Journal of Mathematical Sciences and Applications, vol.1, (2012), 341-347.
- [14] J.Dontchev and M.Przemki, On the various Decompositions of continuous and some weakly continuous functions, Acta Math. Hungar., 71(1-2)(1996), 109-120.
- [15] I.L.Reilly and M.K.Vamanamurthy, On α -continuity in topological spaces, Acta Math.Hungar.45(1985)27-32.
- [16] J.Tong, A decomposition of continuity, Acta Math. Hugar., 48(1986)11-15.
- [17] Maximilian Ganster and Ivan Reilly, A Decomposition of Continuity, Acta Math.Hungar.56(3-4)(1990)299-301.