Entropy Generation on MHD Flow and Heat Transfer of Non-Newtonian Fluid Flow Over a Non-Linear Radially Stretching Sheet

S.Sreenadh¹, V. Ramesh Babu², G. Gopi Krishna³, S.R.Mishra⁴ and A.N.S.Srinivas⁵

¹Department of Mathematics, Sri Venkateswara University, Tirupati, 517 502, A.P., India.
²Department of Mathematics, Rashtriya Sanskrit Vidyaapeetha, Tirupati, 517 502, A.P., India.
³Department of Mathematics, Marri Laxman Reddy Institute of Technology and Management, Hyderabad - 500403
⁴Department of Mathematics, Siksha O Anusandhan, Bhubaneswar - 751030, Odisha, India.
⁵Department of Mathematics, School of Advanced Sciences, VIT, Vellore, 632 014, T.N., India.

*Corresponding author E-mail: ansssrinivas@vit.ac.in

Abstract

An investigation is made for analyzing the behavior of MHD flow phenomena of a non-Newtonian fluid over a non-linear radially stretching sheet by using numerical technique. Magnetic field is considered in normal direction to the stretching sheet. With use of similarity transformations, the pdes are transformed into odes. The solution of these odes are performed by using fourth order Runge - Kutta method along with shooting technique. The significance of different physical parameters characterizes the flow phenomena are analyzed with the use of graphs. The Jeffrey parameter λ_1 and magnetic parameter M has significant effect on velocity and temperature distribution over a non-linear stretching sheet. It is noticed that, the higher magnetic parameter M results the increase in entropy generation number where the opposite nature is noticed in the case of Bejan number.

Keywords: Axisymmetric flow; Heat transfer; Magnetic effect; Non-Newtonian fluid; Entropy generation.

1. Introduction

2. Mathematical formulation:

Fig. 1 illustrates the magneto hydrodynamic Jeffrey fluid flow over a nonlinear radially stretching surface corresponds to the plane $z=0$. The flow is produced when the sheet is stretched along the radial direction. The velocity of the sheet is defined as $U(r)=cr^3$, which is nonlinear and c is a dimensional constant.
Here, the sheet surface and ambient temperatures are T_s and T_m, respectively, where $T_s > T_m$.

![Fig.1: Physical Model](Image)

For an incompressible Jeffrey fluid, the constitutive equations are:

$$\tau = -\bar{p} I + s$$

$$s = \frac{\mu}{1 + \lambda_1} \left(\bar{\gamma} + \lambda_2 \bar{\gamma} \right)$$

where \bar{T} is Cauchy’s stress tensor, \bar{p} is pressure, \bar{I} is an identity tensor, \bar{s} is extra stress tensor, λ_1 is ratio of relaxation to retardation time, λ_2 is retardation time, $\bar{\gamma}$ is shear rate and dots over the quantities indicate differentiation with respect to time.

Following [20], the governing equations with boundary conditions for the flow of a Jeffrey fluid are

\[
\begin{align*}
\frac{\partial u}{\partial r} + \frac{u}{r} + \frac{\partial w}{\partial z} &= 0 \quad (1) \\
\frac{\partial u}{\partial r} + w \frac{\partial u}{\partial z} - \frac{1}{1 + \lambda_1} \frac{\partial^2 u}{\partial z^2} - \frac{\sigma B'(r)}{\rho} u + \rho \beta (T - T_m) &= 0 \quad (2) \\
\frac{\partial T}{\partial r} + w \frac{\partial T}{\partial z} &= \frac{\partial^2 T}{\partial z^2} \quad (3) \\

\text{at } z = 0 \quad u = U(r) = cr^3, w = 0, T = T_m = A_1 \left(\frac{r^6}{l^6} \right) \quad (4) \\
\text{at } z \to \infty \quad u \to 0, T = T_m
\end{align*}
\]

Here u is the radial and w is the axial velocity respectively, $v = \frac{\mu}{\rho}$ is the kinematic viscosity, μ is coefficient of viscosity, ρ is fluid density, T is the fluid temperature, $\alpha = \frac{k}{\rho C_p}$ is the thermal diffusivity and $B(r) = B_r r$ is the variable magnetic field.

Here,

\[u = U(r) = cr^3 f'(\eta), w = -cr^2 \sqrt{r} [f(\eta) + \eta f'(\eta)]. \]

\[\theta = \frac{T - T_m}{T_m - T_s}, Gr = \frac{\rho \beta (T_m - T_s)}{c_r^2}. \]

\[\eta = \sqrt{\frac{r}{c_r} Pr}, Ec = \frac{U^2}{c_r (T_m - T_s)}. \]

The momentum equation along with boundary conditions, equations (4) and (5) reduces to

\[
\frac{1}{1 + \lambda_1} f'' + 3ff'' - 3(f')^2 - MF' + Gr\theta = 0 \quad (6)
\]

\[
\theta'' - 6Pr f'\theta + 3Pr f \theta' = \frac{Pr Ec}{1 + \lambda_1} (f')^2 \quad (7)
\]

\[
f(\eta) = 0, f'(\eta) = 1, \theta(\eta) = 1 \quad \text{at } \eta = 0
\]

\[
f'(\eta) = 0, \theta(\eta) = 0 \quad \text{at } \eta = \infty
\]

\section{3. Entropy analysis}

The entropy generation for a conducting fluid through a deformable vertical porous layer is given as

\[
E_{Re} = \frac{k}{T_m^{-1} \frac{\partial^2 T}{\partial z^2}} + \frac{\mu}{(1 + \lambda_1) T_m} \left(\frac{\partial u}{\partial z} \right)^2 + \frac{\sigma B^2(r)}{T_m} u^2
\]

The entropy generation number can be determined as

\[
N_s = \frac{T_m^2 \dot{E}_{Re}}{k\left(T_m - T_s\right)}
\]

Hence

\[
E_{Re} = \frac{Re^2}{1 + \lambda_1} \frac{Br^2}{\Omega} f^2 + M Re \left(\frac{Br}{\Omega} \right) f^2
\]

Where $Br = \frac{\mu U^3}{k(T_m - T_s)}$ is the Brinkman number, $\Omega = \frac{T_m - T_s}{T_m}$ is the temperature difference.

Also N_s can be expressed as a summation of N_1 and N_2. Here N_1 and N_2 represent the entropy due to heat transfer and fluid friction respectively

\[
N_1 = \frac{Re^2}{1 + \lambda_1} \frac{Br^2}{\Omega} f^2 + M Re \left(\frac{Br}{\Omega} \right) f^2
\]

\[\text{The Bejan number (Be) as}
\]

\[
Be = \frac{N_1}{N_2} = \frac{1}{1 + \Phi}
\]

Where $\Phi = \frac{N_1}{N_2}$. Hence it is clear to note that for $0 \leq \Phi \leq 1$ heat transfer dominates and for $\Phi > 1$ fluid friction dominates. Further the contributions of both fluid friction and heat transfer for entropy generation are equal in the case of $\Phi = 1$.

\section{4. Results and discussions}

In this study, the MHD heat transfer analysis for Jeffrey fluid flow over a nonlinear radial stretching sheet is investigated. Numerical solution such as Runge-Kutta forth order with shooting technique is implemented to handle the transformed ODEs. The computations are carried out by using Matlab software to analyze the quantitative effects of the different physical parameters. The results are discussed for parameters such as magnetic M, Jeffrey parameter λ_1, Prandtl number Pr, Eckert number Ec, and Grashof number Gr. The results are presented in the form of graphs showing how these parameters affect the flow and heat transfer characteristics.
number (Gr). To study the numerical computation, we used \(Ec = 0.2, Gr = 5, \lambda = 0.2 \).

Figs. 2–6 illustrates the significance of the various physical parameters on the non-dimensional fluid velocity. It is known from the Fig. 2 that the velocity enhances with an increasing Eckert number \(Ec \). The increase in Pr fluid velocity reduces which is given in Fig. 3. It is noticed from Fig. 4 that the growing values of Grashof number \(Gr \) enhances the fluid velocity. The effect of Jeffrey parameter \(\lambda_1 \) and magnetic parameter \(M \) on fluid velocity is presented in Figs. 5 and 6 respectively. It is noticed that in velocity enhances with increasing Jeffrey parameter whereas effect is reversed for higher values of magnetic parameter \(M \).

Figs. 7–11 illustrate the influence of aforesaid parameters on temperature. The higher values of magnetic parameter \(M \) and Eckert number \(Ec \) yields the decrease in temperature which is shown in Figs. 7 and 8 respectively. Figs. 9 and 10 shows the change in temperature for various values of Prandtl number \(Pr \) and Jeffrey parameter \(\lambda_1 \), i.e., the temperature decreases as \(Pr \) and \(\lambda_1 \) increases. Fig. 11 shows the significance of Grashof number \(Gr \) on temperature. It is clear that the increasing values of \(Gr \) reduces the temperature.

The change in entropy generation number for \(\lambda_1, Re, M \) and \(Br/\Omega \) are presented in Figs. 12–15 respectively. It is clear from Fig. 12 that the temperature lessens as Jeffrey parameter increases. But from Figs. 13–15, the opposite nature is observed i.e., with higher values of Reynolds number \(Re \), \(M \) and \(Br/\Omega \).

The influence of Jeffrey parameter \(\lambda_1 \), \(M \) and group parameter \(Br/\Omega \) on Bejan number profiles is shown in Figs. 16–18 respectively. Fig. 16 shows that the Bejan number profiles increases with increasing Jeffrey parameter \(\lambda_1 \). The Bejan number profiles decreases with growing \(M \) and \(Br/\Omega \) is illustrated in Figs. 17–18 respectively.

5. Conclusions:

The numerical study of entropy generation on MHD flow over a non-linear radially stretched sheet is presented. The nonlinear coupled ODEs are solved by shooting technique along with Runge–Kutta method of order four. The significance of pertinent physical parameters on flow quantities are presented through graphs. The important aspects of aforesaid discussions are as follows,

(i) The velocity of the fluid over a stretching sheet increases with increasing values of \(Ec, Gr \) and \(\lambda_1 \), where fluid velocity decreases as \(M \) and \(Pr \) increase.

(ii) The temperature distribution in the fluid increases with increasing values of \(Ec \) and \(M \), where the opposite behavior is observed in the case of \(Pr, \lambda_1 \) and \(Gr \).

(iii) The entropy generation number increases as \(M, Re \) and \(Br/\Omega \) increases. The decrease in entropy generation number is noticed for increasing values of as \(\lambda_1 \).

(iv) The Bejan number increases as \(\lambda_1 \) increases whereas it retards with increasing \(M \) and \(Br/\Omega \).
Fig 8: Temperature profiles for different values of Ec

Fig 9: Temperature profiles for different values of Pr

Fig 10: Temperature profiles for different values of λ_4

Fig 11: Temperature profiles for different values of Gr

Fig 12: Entropy generation number profiles for different values of λ_i

Fig 13: Entropy generation number profiles for different values of Re

Fig 14: Entropy generation number profiles for different values of M
Fig 17: Bejan number profiles for different values of Br/Ω

Fig 18: Bejan number profiles for different values of Br/Ω

Fig 15: Entropy generation number profiles for different values of Br/Ω

References

